• Title/Summary/Keyword: wavelet function

Search Result 408, Processing Time 0.026 seconds

BIORTHOGONAL WAVELET DERIVATIVES

  • Kwon, Soon-Geol
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.423-431
    • /
    • 2002
  • In this paper, we find $n^{th}$ order wavelet derivatives of a sufficiently smooth function using biorthogonal wavelet bases and derive the order of convergence of the $n^{th}$ order wavelet derivatives.

A Note on A Bayesian Approach to the Choice of Wavelet Basis Functions at Each Resolution Level

  • Park, Chun-Gun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1465-1476
    • /
    • 2008
  • In recent years wavelet methods have been focused on block shrinkage or thresholding approaches to accounting for the sparseness of the wavelet representation for an unknown function. The block shrinkage or thresholding methods have been developed in both of classical methods and Bayesian methods. In this paper, we propose a Bayesian approach to selecting wavelet basis functions at each resolution level without MCMC procedure. Simulation study and an application are shown.

  • PDF

Earthquake time-frequency analysis using a new compatible wavelet function family

  • Moghaddam, Amir Bazrafshan;Bagheripour, Mohammad H.
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.839-852
    • /
    • 2012
  • Earthquake records are often analyzed in various earthquake engineering problems, making time-frequency analysis for such records of primary concern. The best tool for such analysis appears to be based on wavelet functions; selection of which is not an easy task and is commonly carried through trial and error process. Furthermore, often a particular wavelet is adopted for analysis of various earthquakes irrespective of record's prime characteristics, e.g. wave's magnitude. A wavelet constructed based on records' characteristics may yield a more accurate solution and more efficient solution procedure in time-frequency analysis. In this study, a low-pass reconstruction filter is obtained for each earthquake record based on multi-resolution decomposition technique; the filter is then assigned to be the normalized version of the last approximation component with respect to its magnitude. The scaling and wavelet functions are computed using two-scale relations. The calculated wavelets are highly efficient in decomposing the original records as compared to other commonly used wavelets such as Daubechies2 wavelet. The method is further advantageous since it enables one to decompose the original record in such a way that a clear time-frequency resolution is obtained.

Optimal Wavelet Selection for AR Model Parameter Identification of Nonstationary Time-Varying Signal (비정상 시변신호의 AR모델 파라메터 인식을 위한 최적의 웨이브렛 선택)

  • Shin, D.H.;Kim, S.H.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.50-57
    • /
    • 1996
  • In this paper, we proposed the method of optimal wavelet selection and wavelet expansion of AR(autoregressive) parameters by selected wavelet using F-test. A cost function is introduced as a wavelet selection method. Using this cost function, wavelets (D4 to D20) are tested to the synthesized signal. With this selected wavelet, we get the wavelet coefficients of AR parameters to both synthesized signal and real speech signal. To evaluate the proposed method, this wavelet based algorithm is compared with the Kalman filering algorithm. As a results, the proposed method shows a better performance by about 5-10dB than the Kalman filter.

  • PDF

An Improved Bit Transmission Rate Technique in the WSK (웨이브릿 편이변조시스템에서 비트 전송률 향상 기법)

  • Jeong, Tae-Il;Lee, Tae-Oh;Ryu, Tae-Kyung;Kim, Jong-Nam;Moon, Kwang-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2304-2310
    • /
    • 2009
  • This paper presents WSK(wavelet shift keying) that can be improved to bit transmission rate in the digital communication. An algorithm of the conventional modulation is carried out that the scaling function and wavelet are encoded to 1(mark) and 0(space) for the input binary data, respectively. A new modulation technique that uses four carrier frequencies is proposed. Four carrier frequencies are defined as scaling function, inversed scaling function, wavelet, and inversed wavelet, which are encoded to 10, 11, 00 and 01 respectively. An algorithm of the proposed demodulation is decode to the original data using four correlation. As a results of simulation, we confirmed that the proposed method was improved to the performance at twice for the bit transmission rate.

Design of Fresnelet Transform based on Wavelet function for Efficient Analysis of Digital Hologram (디지털 홀로그램의 효율적인 분해를 위한 웨이블릿 함수 기반 프레넬릿 변환의 설계)

  • Seo, Young-Ho;Kim, Jin-Kyum;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.291-298
    • /
    • 2019
  • In this paper, we propose a Fresnel transform method using various wavelet functions to efficiently decompose digital holograms. After implementing the proposed wavelet function-based Fresnelet transforms, we apply it to the digital hologram and analyze the energy characteristics of the coefficients. The implemented wavelet transform-based Fresnelet transform is well suited for reconstructing and processing holograms which are optically obtained or generated by computer-generated hologram technique. After analyzing the characteristics of the spline function, we discuss wavelet multiresolution analysis method based on it. Through this process, we proposed a transform tool that can effectively decompose fringe patterns generated by optical interference phenomena. We implement Fresnelet transform based on wavelet function with various decomposition properties and show the results of decomposing fringe pattern using it. The results show that the energy distribution of the coefficients is significantly different depending on whether the random phase is included or not.

Structure of the Mixed Neural Networks Based On Orthogonal Basis Functions (직교 기저함수 기반의 혼합 신경회로망 구조)

  • Kim, Seong-Joo;Seo, Jae-Yong;Cho, Hyun-Chan;Kim, Seong-Hyun;Kim, Hong-Tae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.6
    • /
    • pp.47-52
    • /
    • 2002
  • The wavelet functions are originated from scaling functions and can be used as activation function in the hidden node of the network by deciding two parameters such as scale and center. In this paper, we would like to propose the mixed structure. When we compose the WNN using wavelet functions, we propose to set a single scale function as a node function together. The properties of the proposed structure is that while one scale function approximates the target function roughly, the other wavelet functions approximate it finely. During the determination of the parameters, the wavelet functions can be determined by the global search algorithm such as genetic algorithm to be suitable for the suggested problem. Finally, we use the back-propagation algorithm in the learning of the weights.

A Representation of Green Function Using Discrete Wavelet Concept for Fast Field Analysis (고속 전자파 해석을 위한 그린 함수의 이산 웨이블릿 표현법)

  • Kim Hyung-Hoon;Park Jong-Il;Kim Hyeong-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.9 s.112
    • /
    • pp.895-899
    • /
    • 2006
  • A compact representation of Green function is proposed by applying the discrete wavelet concept in the k-domain, which can be used for the acceleration of scattered field calculations in integral equation methods. Since the representation of Green function is very compact in the joint spatio-spectral domain, it can be effectively utilized in the fast computation of radiation integral of electromagnetic problems. A mathematical expression of Green function based on the discrete wavelet concept is derived and its characteristics are discussed.

Wavelet Estimation of Regression Functions with Errors in Variables

  • Kim, Woo-Chul;Koo, Ja-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.849-860
    • /
    • 1999
  • This paper addresses the issue of estimating regression function with errors in variables using wavelets. We adopt a nonparametric approach in assuming that the regression function has no specific parametric form, To account for errors in covariates deconvolution is involved in the construction of a new class of linear wavelet estimators. using the wavelet characterization of Besov spaces the question of regression estimation with Besov constraint can be reduced to a problem in a space of sequences. Rates of convergence are studied over Besov function classes $B_{spq}$ using $L_2$ error measure. It is shown that the rates of convergence depend on the smoothness s of the regression function and the decay rate of characteristic function of the contaminating error.

  • PDF

ALMOST SURE AND COMPLETE CONSISTENCY OF THE ESTIMATOR IN NONPARAMETRIC REGRESSION MODEL FOR NEGATIVELY ORTHANT DEPENDENT RANDOM VARIABLES

  • Ding, Liwang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.51-68
    • /
    • 2020
  • In this paper, the author considers the nonparametric regression model with negatively orthant dependent random variables. The wavelet procedures are developed to estimate the regression function. For the wavelet estimator of unknown function g(·), the almost sure consistency is derived and the complete consistency is established under the mild conditions. Our results generalize and improve some known ones for independent random variables and dependent random variables.