• 제목/요약/키워드: wavelet finite element

검색결과 35건 처리시간 0.025초

A multi-resolution analysis based finite element model updating method for damage identification

  • Zhang, Xin;Gao, Danying;Liu, Yang;Du, Xiuli
    • Smart Structures and Systems
    • /
    • 제16권1호
    • /
    • pp.47-65
    • /
    • 2015
  • A novel finite element (FE) model updating method based on multi-resolution analysis (MRA) is proposed. The true stiffness of the FE model is considered as the superposition of two pieces of stiffness information of different resolutions: the pre-defined stiffness information and updating stiffness information. While the resolution of former is solely decided by the meshing density of the FE model, the resolution of latter is decided by the limited information obtained from the experiment. The latter resolution is considerably lower than the former. Second generation wavelet is adopted to describe the updating stiffness information in the framework of MRA. This updating stiffness in MRA is realized at low level of resolution, therefore, needs less number of updating parameters. The efficiency of the optimization process is thus enhanced. The proposed method is suitable for the identification of multiple irregular cracks and performs well in capturing the global features of the structural damage. After the global features are identified, a refinement process proposed in the paper can be carried out to improve the performance of the MRA of the updating information. The effectiveness of the method is verified by numerical simulations of a box girder and the experiment of a three-span continues pre-stressed concrete bridge. It is shown that the proposed method corresponds well to the global features of the structural damage and is stable against the perturbation of modal parameters and small variations of the damage.

Implementation Strategy for the Numerical Efficiency Improvement of the Multiscale Interpolation Wavelet-Galerkin Method

  • Seo Jeong Hun;Earmme Taemin;Jang Gang-Won;Kim Yoon Young
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.110-124
    • /
    • 2006
  • The multi scale wavelet-Galerkin method implemented in an adaptive manner has an advantage of obtaining accurate solutions with a substantially reduced number of interpolation points. The method is becoming popular, but its numerical efficiency still needs improvement. The objectives of this investigation are to present a new numerical scheme to improve the performance of the multi scale adaptive wavelet-Galerkin method and to give detailed implementation procedure. Specifically, the subdomain technique suitable for multiscale methods is developed and implemented. When the standard wavelet-Galerkin method is implemented without domain subdivision, the interaction between very long scale wavelets and very short scale wavelets leads to a poorly-sparse system matrix, which considerably worsens numerical efficiency for large-sized problems. The performance of the developed strategy is checked in terms of numerical costs such as the CPU time and memory size. Since the detailed implementation procedure including preprocessing and stiffness matrix construction is given, researchers having experiences in standard finite element implementation may be able to extend the multi scale method further or utilize some features of the multiscale method in their own applications.

파동방정식 수치해의 일관성에 관한 연구 (A Study on Consistency of Numerical Solutions for Wave Equation)

  • 편석준;박윤희
    • 지구물리와물리탐사
    • /
    • 제19권3호
    • /
    • pp.136-144
    • /
    • 2016
  • 탄성파 자료의 역산은 파동방정식에 기초하고 있으므로 파동방정식의 해를 정확하게 구하는 것이 가장 중요하다. 특히, 전파형역산은 파동장 전체를 이용하기 때문에 정문제에 해당하는 모델링이 정확하게 이루어져야 신뢰할 수 있는 결과를 얻게 된다. 파동방정식의 수치해를 구하는 대표적인 기법인 유한차분법과 유한요소법은 해의 수렴성을 보장할 수 있어야 하는데, 해의 수렴성은 이론적으로 일반화된 증명이 되어 있으나 실제 문제에 적용할 경우 일관성과 안정성을 분석해야 한다. 모델링 결과의 일관성은 송신원 함수의 구현이 매우 중요한 부분인데, 유한차분법은 디랙 델타 함수(Dirac delta function)를 나타낼 때 격자 간격으로 표준화된 싱크 함수(sinc function)를 사용해야 하는 반면 유한요소법은 격자 간격에 관계없이 기저함수 값을 사용하면 된다. 주파수 영역 파동방정식을 사용할 경우 송신 파형 함수의 스펙트럼을 정확하게 표현하기 위해 샘플링 이론으로 정의되는 시간 간격보다 더 조밀한 샘플링 간격을 사용하고 나이퀴스트(Nyquist) 주파수보다 더 높은 주파수를 최대 주파수로 사용해야 한다. 또한, 복소 각주파수를 사용하는 경우 감쇠 파동방정식을 만족하기 위해서는 송신 파형 함수를 먼저 감쇠한 후 사용해야 한다. 이러한 요건들이 모두 만족되었을 때 신뢰할 수 있는 역산 알고리즘 개발이 가능하다.

Reduced wavelet component energy-based approach for damage detection of jacket type offshore platform

  • Shahverdi, Sajad;Lotfollahi-Yaghin, Mohammad Ali;Asgarian, Behrouz
    • Smart Structures and Systems
    • /
    • 제11권6호
    • /
    • pp.589-604
    • /
    • 2013
  • Identification of damage has become an evolving area of research over the last few decades with increasing the need of online health monitoring of the large structures. The visual damage detection can be impractical, expensive and ineffective in case of large structures, e.g., offshore platforms, offshore pipelines, multi-storied buildings and bridges. Damage in a system causes a change in the dynamic properties of the system. The structural damage is typically a local phenomenon, which tends to be captured by higher frequency signals. Most of vibration-based damage detection methods require modal properties that are obtained from measured signals through the system identification techniques. However, the modal properties such as natural frequencies and mode shapes are not such good sensitive indication of structural damage. Identification of damaged jacket type offshore platform members, based on wavelet packet transform is presented in this paper. The jacket platform is excited by simple wave load. Response of actual jacket needs to be measured. Dynamic signals are measured by finite element analysis result. It is assumed that this is actual response of the platform measured in the field. The dynamic signals first decomposed into wavelet packet components. Then eliminating some of the component signals (eliminate approximation component of wavelet packet decomposition), component energies of remained signal (detail components) are calculated and used for damage assessment. This method is called Detail Signal Energy Rate Index (DSERI). The results show that reduced wavelet packet component energies are good candidate indices which are sensitive to structural damage. These component energies can be used for damage assessment including identifying damage occurrence and are applicable for finding damages' location.

Time-frequency analysis of a coupled bridge-vehicle system with breathing cracks

  • Wang, W.J.;Lu, Z.R.;Liu, J.K.
    • Interaction and multiscale mechanics
    • /
    • 제5권3호
    • /
    • pp.169-185
    • /
    • 2012
  • The concrete bridge is likely to produce fatigue cracks during long period of service due to the moving vehicular loads and the degeneration of materials. This paper deals with the time-frequency analysis of a coupled bridge-vehicle system. The bridge is modeled as an Euler beam with breathing cracks. The vehicle is represented by a two-axle vehicle model. The equation of motion of the coupled bridge-vehicle system is established using the finite element method, and the Newmark direct integration method is adopted to calculate the dynamic responses of the system. The effect of breathing cracks on the dynamic responses of the bridge is investigated. The time-frequency characteristics of the responses are analyzed using both the Hilbert-Huang transform and wavelet transform. The results of time-frequency analysis indicate that complicated non-linear and non-stationary features will appear due to the breathing effect of the cracks.

Study on damage detection software of beam-like structures

  • Xiang, Jiawei;Jiang, Zhansi;Wang, Yanxue;Chen, Xuefeng
    • Structural Engineering and Mechanics
    • /
    • 제39권1호
    • /
    • pp.77-91
    • /
    • 2011
  • A simply structural damage detection software is developed to identification damage in beams. According to linear fracture mechanics theory, the localized additional flexibility in damage vicinity can be represented by a lumped parameter element. The damaged beam is modeled by wavelet-based elements to gain the first three frequencies precisely. The first three frequencies influencing functions of damage location and depth are approximated by means of surface-fitting techniques to gain damage detection database of forward problem. Then the first three measured natural frequencies are employed as inputs to solve inverse problem and the intersection of the three frequencies contour lines predict the damage location and depth. The DLL (Dynamic Linkable Library) file of damage detection method is coded by C++ and the corresponding interface of software is coded by virtual instrument software LabVIEW. Finally, the software is tested on beams and shafts in engineering. It is shown that the presented software can be used in actual engineering structures.

Strain-based structural condition assessment of an instrumented arch bridge using FBG monitoring data

  • Ye, X.W.;Yi, Ting-Hua;Su, Y.H.;Liu, T.;Chen, B.
    • Smart Structures and Systems
    • /
    • 제20권2호
    • /
    • pp.139-150
    • /
    • 2017
  • The structural strain plays a significant role in structural condition assessment of in-service bridges in terms of structural bearing capacity, structural reliability level and entire safety redundancy. Therefore, it has been one of the most important parameters concerned by researchers and engineers engaged in structural health monitoring (SHM) practices. In this paper, an SHM system instrumented on the Jiubao Bridge located in Hangzhou, China is firstly introduced. This system involves nine subsystems and has been continuously operated for five years since 2012. As part of the SHM system, a total of 166 fiber Bragg grating (FBG) strain sensors are installed on the bridge to measure the dynamic strain responses of key structural components. Based on the strain monitoring data acquired in recent two years, the strain-based structural condition assessment of the Jiubao Bridge is carried out. The wavelet multi-resolution algorithm is applied to separate the temperature effect from the raw strain data. The obtained strain data under the normal traffic and wind condition and under the typhoon condition are examined for structural safety evaluation. The structural condition rating of the bridge in accordance with the AASHTO specification for condition evaluation and load and resistance factor rating of highway bridges is performed by use of the processed strain data in combination with finite element analysis. The analysis framework presented in this study can be used as a reference for facilitating the assessment, inspection and maintenance activities of in-service bridges instrumented with long-term SHM system.

응력특이를 갖는 축방향 부재의 웨이블렛 급수해석 (Wavelet Series Analysis of Axial Members with Stress Singularities)

  • 우광성;장영민;이동우;이상윤
    • 한국전산구조공학회논문집
    • /
    • 제23권1호
    • /
    • pp.1-8
    • /
    • 2010
  • 푸리에 급수는 사인 곡선처럼 일정한 진폭으로 진동하는 정규파(wave)를 사용한다. 그래서 푸리에 급수에서 사용하는 함수는 진동수의 크기가 시간에 따라 변하지 않기 때문에 국부적인 영역에서 급작스런 진동이나 불연속성을 갖는 신호를 표현하기에는 한계가 있다. 그러나 이러한 푸리에 해석의 단점을 여러개의 적절한 웨이블렛의 선형조합에 의해 보완할 수 있는 것이 웨이블렛 급수해석이다. 시간에 집중되어진 궤적의 작은 잔파(wavelet)를 사용함으로써 시간과 주기의 폭을 변화시킬 수 있기 때문에 유동적이고, 특이(singular)형상을 지닌 신호들을 보다 효율적으로 표현할 수 있다. 이 연구의 주요 목적은 웨이블렛 급수해석이라고 불리는 방법을 2계 편미분방정식으로 표현되는 1차원 축방향 부재에 웨이블렛 이론을 적용함과 동시에 유한요소법과 같은 수치해석법과의 비교를 통해 성능평가를 위해 제안되었다. 여러 형태의 웨이블렛 함수의 검토 후에 HAT 함수가 웨이블렛 및 스케일링 함수로 채택되었다. 등분포하중을 받는 경우의 축방향 부재해석에서 제안된 방법은 유한요소법과 같이 효율적임을 보이며, 특히 응력특이점에서는 더 정확한 값을 보였으며, 계산시간도 절약되는 장점을 얻을 수 있었다.

Wave propagation simulation and its wavelet package analysis for debonding detection of circular CFST members

  • Xu, Bin;Chen, Hongbing;Xia, Song
    • Smart Structures and Systems
    • /
    • 제19권2호
    • /
    • pp.181-194
    • /
    • 2017
  • In order to investigate the interface debonding defects detection mechanism between steel tube and concrete core of concrete-filled steel tubes (CFSTs), multi-physical fields coupling finite element models constituted of a surface mounted Piezoceramic Lead Zirconate Titanate (PZT) actuator, an embedded PZT sensor and a circular cross section of CFST column are established. The stress wave initiation and propagation induced by the PZT actuator under sinusoidal and sweep frequency excitations are simulated with a two dimensional (2D) plain strain analysis and the difference of stress wave fields close to the interface debonding defect and within the cross section of the CFST members without and with debonding defects are compared in time domain. The linearity and stability of the embedded PZT response under sinusoidal signals with different frequencies and amplitudes are validated. The relationship between the amplitudes of stress wave and the measurement distances in a healthy CFST cross section is also studied. Meanwhile, the responses of PZT sensor under both sinusoidal and sweep frequency excitations are compared and the influence of debonding defect depth and length on the output voltage is also illustrated. The results show the output voltage signal amplitude and head wave arriving time are affected significantly by debonding defects. Moreover, the measurement of PZT sensor is sensitive to the initiation of interface debonding defects. Furthermore, wavelet packet analysis on the voltage signal under sweep frequency excitations is carried out and a normalized wavelet packet energy index (NWPEI) is defined to identify the interfacial debonding. The value of NWPEI attenuates with the increase in the dimension of debonding defects. The results help understand the debonding defects detection mechanism for circular CFST members with PZT technique.

압전 변환기를 이용한 복합재료 보의 비파괴 평가 (Quantitative Nondestructive Evaluation in Composite Beam Using Piezoelectric Transducers)

  • 이상협;최영근;김상태
    • Composites Research
    • /
    • 제20권3호
    • /
    • pp.31-36
    • /
    • 2007
  • 본 연구는 압전 변환기를 이용하여 탄소/에폭시 복합재료 보의 초기 균열 길이에 대한 정량적인 예측방법을 제시하였다. 구조물의 손상에 대한 비파괴평가기술에 대한 관심은 증가하고 있다. 본 연구에서는 시간-주파수 영역에서 웨이블렛 변환에 기초한 신호처리기술로 손상 유무와 손상평가를 위한 방법을 제시하였다. 한 쌍의 피에조 재료를 이용하여 탄소/에폭시 복합재료 보의 동적응답을 제안한 신호처리 기술로 협대역 가진하에서 연구하였다.