• Title/Summary/Keyword: wavelength shift

Search Result 301, Processing Time 0.038 seconds

Twisted Intramoecular Charge-Transfer Behavior of a Pre-Twisted Molecule, 4-Biphenylcarboxylate Bonded to Poly(Methyl Methacrylate)

  • 강성관;안교덕;조대원;윤민중
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.10
    • /
    • pp.972-976
    • /
    • 1995
  • A trace amount of 4-biphenylcarboxylate having a pre-twisted biphenyl moiety was attached to a poly(methyl methacrylate) side chain and the fluorescence properties of the chromophore were investigated in various solvents such as ethyl acetate and butyl chloride. At room temperature, the polymer exhibited a distinct red shift of the short wavelength emission (325 nm) and an enhanced emission intensity around 430 nm upon excitation at the absorption red edge. The temperature dependence of the intensity ratio (R) of the 325 nm emission to the 430 nm emission was observed when exciting at the red edge over the temperature range between -20 and 60 ℃. However, the temperature dependence was not observed when exciting at the shorter wavelength. The Arrhenius plot of the R value shows the activation energy of 6.0 kJ/mol which is in good agreement with the energy required for the twist of the biphenyl moiety. Together with the results of red edge excitation effects it was concluded that the pre-twisted geometry of the biphenyl moiety is preserved by the restriction of the polymer chain to facilitate the formation of the twisted intramolecular charge transfer (TICT) state upon excitation.

Effects of Gamma Irradiation on Array Type Fiber Bragg Grating Sensors (배열형 FBG 센서의 감마선 영향)

  • Kim, Jong-Yeol;Lee, Nam-Ho;Jung, Hyun-Kyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.937-939
    • /
    • 2016
  • In this study, we studied the gamma-radiation effect of fiber Bragg gratings (FBGs) manufactured by array sensors. The array FBGs were fabricated in a different Bragg wavelength using the same commercial Ge-doped fiber and exposed to gamma-radiation up to a dose of about 100 kGy at the dose rate of 113 Gy/min. It was analyzed radiation effects by measuring the radiation-induced change in the temperature sensitivity coefficient and Bragg wavelength shift after irradiation.

  • PDF

Double-Side Notched Long-Period Fiber Gratings fabricated by Using an Inductively Coupled Plasma for Force Sensing

  • Fang, Yu-Lin;Huang, Tzu-Hsuan;Chiang, Chia-Chin;Wu, Chao-Wei
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1399-1404
    • /
    • 2018
  • This study used an inductively coupled plasma (ICP) dry etching process with a metal amplitude mask to fabricate a double-side notched long-period fiber grating (DNLPFG) for loading sensing. The DNLPFG exhibited increasing resonance attenuation loss for a particular wavelength when subjected to loading. When the DNLPFG was subjected to force loading, the transmission spectra were changed, showing a with wavelength shift and resonance attenuation loss. The experimental results showed that the resonant dip of the DNLPFG increased with increasing loading. The maximum resonant dip of the $40-{\mu}m$ DNLPFG sensor was -26.522 dB under 0.049-N loading, and the largest force sensitivity was -436.664 dB/N. The results demonstrate that the proposed DNLPFG has potential for force sensing applications.

Temperature-difference Flow Sensor Using Multiple Fiber Bragg Gratings

  • Kim, Kyunghwa;Eom, Jonghyun;Sohn, Kyungrak;Shim, Joonhwan
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.297-303
    • /
    • 2022
  • Multiple fiber Bragg gratings (FBGs) have been proposed and demonstrated for gas-flow measurements in a flow channel, using the temperature-difference method. This sensor consists of two FBG temperature sensors and two coil heaters. Coil heaters are used to heat the FBGs. The flow rate of the gas can be obtained by monitoring the difference in the Bragg-wavelength shifts of the two FBGs, which has features that exclude the effect of temperature fluctuations. In this study, experiments are conducted to measure the wavelength shift based on the flow rate, and to evaluate the gas-flow rate in a gas tube. Experimental results show that the sensor has a linear characteristic over a flow-rate range from 0 to 25 ℓ/min. The measured sensitivity of the sensor is 3.2 pm/(ℓ/min) at a coil current of 120 mA.

Development of A FBG Sensor Interrogator for Detecting Strain and Performance Comparison of Peak Detection Algorithms (변형 검출을 위한 FBG 센서 인테로게이터 개발과 피크검출 알고리즘 성능 비교)

  • Park, Keun-Soo;Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1137-1142
    • /
    • 2013
  • FBG sensors are mainly used to measure strain and temperature of structures. In this paper, an interrogator of FBG sensors is developed and implemented to measure the crack of structures using FPGA and DSP. Developed interrogator consists of an optical source, an optical circulator, an optical grating and a CCD sensor and controller. The spectrum of the reflected light from the FBG sensor is analyzed and peak wavelength is detected. Next, strain of structure can be measured using shift of peak wavelength. Centroid algorithm and Gaussian fitting which are mainly applied to detect peak wavelength of the interrogator are compared in this paper. As a result of experiment, Gaussian fitting is suitable for a developed interrogator.

Temperature Compensation and Characteristics of Fiber Bragg Grating Filters (광섬유격자필터의 온도보상 및 온도보상특성 측정)

  • Yoon, Hyung-Do;Lee, Han-Young;Ku, Ja-Hyon;Chang, Jin-Hyeon;Park, Jong-Hoon;Lee, Kyung-Shik
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.11
    • /
    • pp.82-87
    • /
    • 1999
  • To temperature-compensate the Bragg wavelength of fiber grating filters two materials with different thermal expansion coefficients were depolyed for packaging. After temperature-compensation packaging the maximum difference of the Bragg wavelength in the temperature range of $-10^{\circ}C$ to $70^{\circ}C$ was 0.03nm, which is only about one thirtiety of the Bragg wavelength shift of the temperature-uncompensated fiber grating filter.

  • PDF

Metamaterial Absorber Composed of Multi-layered Sub-wavelength Unit Cell (다층구조 서브파장 단위 셀로 구성된 메타물질 흡수체)

  • Kim, Hyung Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.31-37
    • /
    • 2020
  • In this paper, we propose a novel sub-wavelength unit cell metamaterial absorber using multi-layer structure. The proposed absorber consists of 4 layers, and each layer has a spiral resonator connected by a via hole. This structure increases inductance of the unit cell, and therefore the resonant frequency can shift to lower frequency. We optimized the proposed absorber, and the electrical size of the unit cell is dramatically reduced to 0.013 times of the wavelength. The performance of the proposed absorber is demonstrated with full-wave simulation and measurement results. An absorption rate exceeding 97% is achieved at 1.74GHz. In addition, the proposed absorber attains a high absorption rate of 90% for different polarization and incident angles.

The Otimization of Laser System for Photodynamic Therapy of Malignancies (악성종양의 광역학적 치료를 위한 레이저 시스템의 최적화)

  • 임현수;김주옥;황인경
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.6
    • /
    • pp.51-60
    • /
    • 2004
  • In this paper, we optimized the PDT laser system to improve the therapy effects of malignancies. In order to optimize, the variation of laser output and specific wavelength shift have to reduced. To improve the PDT therapy clinician require the diverse radiation mode which irradiate the tumor surface. Continuous wave mode that general application may causes tissue thermal damage not only to tumor tissue, but also to normal tissue. In this paper, therefore, we suggested new technique for radiation method to improved PDT effects and prevented to the thermal effects for the tissue. In the experimental we verified the stability of wavelength, laser output stability and proved the reduced thermal effects to the tissue using the pulse & burst radiation modes in vitro.

Estimation of Sensitivity Enhancements of Material-Dependent Localized Surface Plasmon Resonance Sensor Using Nanowire Patterns (금속물질에 따른 나노구조를 이용한 국소 표면 플라즈몬 공명 센서 특성 분석)

  • Ahn, Heesang;Ahn, Dong-Gyu;Song, Yung Min;Kim, Kyujung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.5
    • /
    • pp.363-369
    • /
    • 2016
  • We explored localized plasmonic field enhancements using nanowire patterns to improve the sensitivity of a surface plasmon resonance (SPR) sensor. Two different materials, gold and silver, were considered for sample materials. Gold and silver nanowire patterns were fabricated by electron beam lithography for experimental measurements. The wavelength SPR sensor was also designed for these experiments. The material-dependent field enhancements on nanowire patterns were first calculated based on Maxwell's equations. Resonance wavelength shifts were indicated as changes in the refractive index from 1.33 to 1.36. The SPR sensor with silver nanowire patterns showed a much larger resonance wavelength shift than the sensor with gold nanowire patterns, in good agreement with simulation results. These results suggest that silver nanowire patterns are more efficient than gold nanowire patterns, and could be used for sensitivity enhancements in situations where biocompatibility is not a consideration.

Influence of the Composition of Shell Layers on the Photoluminescence of Cu0.2InS2 Semiconductor Nanocrystals with a Core-shell Structure

  • Kim, Young-Kuk;Ahn, Si-Hyun;Cho, Young-Sang;Chung, Kookchae;Choi, Chul-Jin;Shin, Pyung-Woo
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.900-904
    • /
    • 2011
  • We have synthesized core-shell structured nanocrystals based on chalcopyrite-type $Cu_{0.2}InS_2$. The photoluminescence of the nanocrystals shows a significant blueshift in the emission wavelength by shell capping with ZnS layers. This shift can be explained with the compressive stress to core nanocrystals applied by the formation of a ZnS shell layer with a large lattice mismatch with the core. In this study, the emission wavelength could be tuned by changing the composition of the shell layers. Nanocrystals with emission wavelength ranging from 575 nm through 630 nm were synthesized by varying the portion of cadmium compared with zinc in the shell layers.