• Title/Summary/Keyword: waveguide VCO

Search Result 7, Processing Time 0.018 seconds

77 GHz Waveguide VCO for Anti-collision Radar Applications (차량 충돌 방지 레이더 시스템 응용을 위한 77 GHz 도파관 전압 조정 발진기)

  • Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1652-1656
    • /
    • 2014
  • In this work, we demonstrated a 77 GHz waveguide VCO with transition from WR-12 to WR-10 for anti-collision radar applications. The fabricated waveguide VCO consists of a GaAs-based Gunn diode, a varactor diode, a waveguide transition, and two bias posts for operating as a LPF and a resonator. The cavity is designed for fundamental mode at 38.5 GHz and operated at second hormonic of 77 GHz. The waveguide transition has a 1.86 dB of insertion loss and -30.22 dB of S11 at the center frequency of 77 GHz. The fabricated VCO achieves an oscillation bandwidth of 870 MHz. Output power is from 12.0 to 13.75 dBm and phase noise is -100.78 dBc/Hz at 1 MHz offset frequency from the carrier.

Development of the High Performance 94 GHz Waveguide VCO (우수한 성능의 94 GHz 도파관 전압조정발진기의 개발)

  • Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.1035-1039
    • /
    • 2012
  • In this paper, we developed a 94 GHz waveguide VCO(voltage controlled oscillator) using a GaAs-based Gunn diode and a varactor diode. The cavity is designed for fundamental mode at 47 GHz and operated at second harmonic of 94 GHz. Bias posts for diodes operate as LPF(low pass filter) and resonator. The fabricated waveguide VCO achieves an oscillation bandwidth of 760 MHz. Output power is from 12.61 to 15.26 dBm and phase noise is -101.13 dBc/Hz at 1 MHz offset frequency from the carrier.

High Performance W-band VCO for FMCW Applications (FMCW 응용을 위한 우수한 성능의 W-band 도파관 전압조정발진기)

  • Ryu, Keun-Kwan;Rhee, Jin-Koo;Kim, Sung-Cha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.214-218
    • /
    • 2012
  • In this paper, we reported on a high performance waveguide VCO(voltage controlled oscillator) for FMCW applications. The waveguide VCO consists of a GaAs Gunn diode, a varactor diode, and two bias posts with low pass filter(LPF). The cavity is designed for fundamental mode at 47 GHz and operated at second harmonic of 94 GHz center frequency. The developed waveguide VCO has 1.095 GHz bandwidth, 590 MHz linearity with 1.69% and output power from 14.86 to 15.93 dBm. The phase noise is under -95 dBc/Hz at 1 MHz offset.

A Design Method of the 94GHz(W-Band) Waveguide Harmonic Voltage Controlled Oscillator for the Armor Sensor (장갑표적 감지센서용 94GHz 도파관 하모닉 전압조정발진기 설계 기법)

  • Roh, Jin-Eep;Choi, Jae-Hyun;Li, Jun-Wen;Ahn, Bierng-Chearl
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.64-72
    • /
    • 2005
  • In this paper, we propose a design method of the millimeter-wave(W-Band) waveguide cavity harmonic voltage controlled oscillator(VCO) using a Gunn diode for the armor sensor. Using the 3-dimensional simulation tool(Ansoft $HFSS^{TM}$), we were able to find the impedance matching point between waveguide and Gunn diode and estimate the oscillation frequency. A varactor diode is used for the frequency tuning, and we find out the equation for the calculation of the tunable frequency range. The designed VCO shows good performances; 17dBm output power at 94GHz center frequency, 520MHz frequency tuning range similar to the estimated value(480MHz).

Experimental Design of the Gunn Diode Mount for W-Band Waveguide Voltage Controlled Oscillator (W-대역 도파관 전압조정발진기를 위한 건 다이오드 마운트의 실험적설계)

  • Min Jae-Yong;Li junwen;Ahn Bierng-Chearl;Roh Jin-Eep;Kim Dong-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.92-101
    • /
    • 2005
  • In this paper, the Gunn diode mount is experimentally designed for use in a W-band waveguide voltage controlled oscillator(VCO). The role of the Gunn diode mount is to match the low impedance of the Gunn diode to the high impedance of waveguide. Computer simulations of VCO characteristics such as center frequency, frequency tuning range, and output power are carried out for various values of disc diameter, disc height, post diameter, and utilized in the experimental optimization of the Gunn diode mount. The designed VCO shows excellent characteristics; 93.9 GHz center fiequency, 600 MHz frequency tuning range with $2{\%}$ linearity, 16 dBm output power.

Vertical Integration of MM-wave MMIC's and MEMS Antennas

  • Kwon, Young-Woo;Kim, Yong-Kweon;Lee, Sang-Hyo;Kim, Jung-Mu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.169-174
    • /
    • 2006
  • In this work, we demonstrate a novel compact mechanical beam steering transmitter based on a direct vertical integration of a 2-D MEMS-based mechanical beam steering antenna with a VCO on a single silicon platform. By eliminating the long feed lines and waveguide metal blocks, the radiation pattern has been improved vastly, resulting in an almost ideal pattern at every scan angle. The losses incurred by the feed lines and phase shifters are also eliminated, which allows the transmitter to be implemented using only a single VCO. The system complexity has been greatly reduced with a total module size of only 1.5 cm ${\times}$ 1.5 cm ${\times}$ 0.4 cm. This work demonstrates that RF MEMS can be a key enabling technology for high-level integration.

Design and Implementation of VCO for Doppler Radar System (도플러 레이더 시스템용 VCO 설계 및 제작)

  • Kim Yong-Hwan;Kim Hyun-Jin;Min Jun-Ki;Yoo Hyung-Soo;Lee Hyung-Kyu;Hong Ui-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.2 s.7
    • /
    • pp.81-87
    • /
    • 2005
  • In this paper, a VCDRO(Voltage Control Dielectirc Resonator Oscillator) for signal source of doppler radar system is designed and fabricated. The proposed VCDRO is made with new tuning mechanism using CPW line. The coplanar waveguide of $\lambda_{g}$/2 in length with varactor diode is placed on the metallization side under the dielectric resonator and coupled to it. Tuning varactor diode is mounted at one end of the CPW. The proposed circuit tuned by a CPW allows one more varactor diode to be mounted on the optimized CPW, where a greater sensitivity of frequency tuning is needed. With varying the biasing voltage for the varactor diode from 0 V to 15 V, output frequency tuning of 12 MHz is obtained. The PLDRO exhibits output power of 16.5 dBm with phase noise in the phase locked state characteristic of -115 dBc/Hz at 100 Hz, -105 dBc/Hz at the 10 kHz, and -102 dBc/Hz at 1 Hz offset from 10.525 GHz , respectively.

  • PDF