• Title/Summary/Keyword: wave-train

Search Result 267, Processing Time 0.021 seconds

Experimental Study on the Slanted Portals for Reducing the Micro-pressure Waves in High-speed Train-tunnel System(I) (고속철도 터널에서 경사갱구 입구의 미기압파 저감성능에 관한 연구(I))

  • Kim, Dong-Hyeon;Shin, Min-Ho;Han, Myeong Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.3-10
    • /
    • 2000
  • The compression wave produced when a high-speed train enters a tunnel propagates along the tunnel ahead of the train. The micro pressure wave related to the compression wave is a special physics phenomena created by high-speed train-tunnel interfaces. A among methods for the purpose of reducing the micro pressure wave is to delay the gradient of the compression wave by using aerodynamic structures. The objective of this paper is to determine the optimum slanted portal using the moving model rig. According to the results, the maximum value of micro pressure wave is reduced by 19.2% for the $45^{\circ}$ slanted portal installed at the entrance of the tunnel and reduced by 41.9% for the $45^{\circ}$ slanted portals at the entrance and exit of the tunnel. Also it is reduced by 34.6% for the $30^{\circ}$ slanted portals installed at the entrance and exit of the tunnel.

  • PDF

Experimental Study of the Internal/external Pressure Variation of TTX Travelling through a Tunnel (한국형 틸팅차량의 터널 주행시 실내/외 압력변화에 대한 실험적 연구)

  • Yun, Su-Hwan;Kwak, Min-Ho;Lee, Dong-Ho;Kwon, Hyeok-Bin;Ko, Tae-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.309-314
    • /
    • 2009
  • When a train enters into a tunnel, a compression wave is generated by a front nose and a expansion wave is generated by a rear tail respectively. The interaction between pressure waves and the train makes the internal and external pressure of the train change dramatically. In this paper, we had measured the internal and external pressure variations of TTX and analyzed the pressure variations as the tunnel length. Also, the rate of internal pressure variations were investigated with the current airtight condition of TTX. In short tunnels, the internal and external pressure variation were not large because the superposition of pressure waves was not happened. In long tunnels, however, the rapid and large pressure variations were shown because of the superpositions between the same sort of pressure waves, such as expansion wave and expansion wave or compression wave and compression wave. In specific length tunnels, the pressure variation and the pressure variation rates were largely lessened because the compression wave and expansion wave were superposed.

Theoretical x-t Diagram Analysis on Pressure Waves of High Speed Train in Tunnel (터널에서의 고속철도 압력파에 관한 X-t선도 이론 해석)

  • 남성원;권혁빈
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.3
    • /
    • pp.200-207
    • /
    • 2004
  • Theoretical study has been conducted to clarify pressure characteristics of KTX (Korea Train eXpress) in tunnel. The severe pressure change in tunnel may give rise to the ear-discomfort for passenger and fatigue for car body. Critical tunnel lengths which are induced by x-t diagram analysis can be applied to the experimental results measured by using the running test with atmospheric pressure sensors and portable data acquisition system in previous study. In this study, the tunnels from 200m to 4000m in length have been chosen for the investigation of tunnel length effects. We found that there are similar patterns of external pressure change for each critical tunnel length. The critical tunnel lengths are governed by train speed, train length and sonic velocity. And, the patterns of pressure wave in tunnel are classified into eight groups.

The Numerical Analysis off the Flow-field Around the Korean Tilting Train Express (한국형 틸팅 열차 주위 유동장 수치 해석)

  • 윤수환;김태윤;고태환;권혁빈;이동호
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.3
    • /
    • pp.193-199
    • /
    • 2004
  • Numerical analysis of aerodynamic characteristics was differently performed according to the running situation of the Korean Tilting Train eXpress(TTX) that would be introduced for an improvement in efficiency of the used railroad track. Fluent 6.0 was used for the analysis of Non-tilting case, Tilting case and Passing-by case with the model of TTX. As a result, the aerodynamic drag had little difference between Tilting and Non-tilting case. However, pressure contour under the train of Tilting case was not symmetry because the gap between a train and the ground was different at both sides. In Passing-by case attraction and counterattraction occurred alternately and affected to the opposite train. When two trains were side by side, the maximum attraction was generated especially. Through an analysis of pressure wave in tunnel a large variation of pressure was generated by the bluff nose of TTX. The results in this study would be good data for the aerodynamic characteristic on TTX and provide important information to judgment of running safety.

The Numerical Simulation of the Pressure wave for G7 Test Train in the Tunnel (G7 시제 차량의 터널내부 압력파에 대한 수치 해석)

  • 권혁빈;김태윤;권재현;이동호;김문상
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.4
    • /
    • pp.260-266
    • /
    • 2002
  • A numerical simulation has been performed to estimate the transient pressure variation in the tunnel when G7 test train passes through the test tunnel in the Kyoeng-Bu high-speed railway. A modified patched grid scheme is developed to handle the relative motion between a train and a tunnel. Also, a hybrid dimensional approach is proposed to calculate the train-tunnel interaction problem efficiently. An axi-symmetric unsteady Euler solve using the Roe's FDS is used for analyzing a complicated pressure field in tunnel during the test train is passing through the tunnel. Usually, this complex phenomenon depends ell the train speed, train length, tunnel length, blockage ratio between train and tunnel cross-sectional area, relative position between train and tunnel, etc. Therefore, numerical simulation should be done carefully in consideration of these factors. Numerical results in this study would be good guidance to make test plans, test equipments selection and to decide their measuring locations. They will also supply important information to the pressurization equipment for high-speed train.

A Study on Tunnel Entry Design Considering the Booming Noise Resulting from Micro-Pressure Wave (미기압파에 의한 터널 출구 소음 저감을 위한 고속철도 터널 형상 개선에 관한 연구)

  • 목재균;최강윤;유재석
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.959-966
    • /
    • 1997
  • In general, the booming noise intensity at tunnel exit is strongly related to the gradient of the compression wave front created by high speed train entering the tunnel. This paper presents some results in relation with the compression wave front produced when the high speed train enters a tunnel. Four kinds of tunnel entrance shape with real dimensions were studied to investigate the formation of compression wave front inside tunnel by train entering tunnel. Computations were carried out using three-dimensional compressible Euler equation with vanishing viscosity and conductivity of fluid. According to the results, the flow disturbances occured at tunnel entrance were eliminated by tunnel hood with same cross sectional area. The compression wave front is formed completely at 30-40m from tunnel entrance. The maximum pressure gradient of compression wave front is reduced by 29.8% for the inclined tunnel hood and reduced by 21.5% for the tunnel hood with holes at the top face with tunnel without hood. The length of the inclined hood is 15m and the length of the hood with holes is 20m.

  • PDF

A study on tunnel entry design considering the booming noise resulting from micro-pressure wave (미기압파에 의한 터널출구소음저감을 위한 고속철도 터널형상개선에 관한 연구)

  • 목재균;최강윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.627-635
    • /
    • 1997
  • In general, the booming noise intensity at tunnel exit is strongly related to the gradient of the compression wave front created by high speed train entering the tunnel. This paper presents some results in relation with the compression wave front produced when the high speed train enters a tunnel. Four kinds of tunnel entrance shape with real dimensions were studied to investigate the formation of compression wave front inside tunnel by train entering tunnel. Computations were carried out using three-dimensional compressible Euler equation with vanishing viscosity and conductivity of fluid. According to the reslts, the flow disturbance occured at tunnel entrance were eliminated by tunnel hood with same cross sectional area. The compression wave front is formed completely at 30-40m from tunnel entrance. The maximum pressure gradient of compression wave front is reduced by 29.8% for the inclined tunnel hood and reduced by 21.5% for the tunnel hood with holes at the top face with tunnel without hood. The length of the inclined hood is 15m and the length of the hood with holes is 20m.

  • PDF

A Study on Fluctuating Pressure Load on High Speed Train Passing through Tunnels

  • Seo Sung-Il;Park Choon-Soo;Min Oak-Key
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.482-493
    • /
    • 2006
  • The carbody structure of a high speed train passing through a tunnel is subjected to pressure fluctuation. Fatigue strength of the carbody structure against the fluctuating pressure loading should be proved in the design stage for safety. In this study, to get the useful information on the pressure fluctuation in the tunnel, measurement has been conducted during test running of KHST on the high speed line for two years. The measured results were analyzed and arranged to be used for carbody design. A prediction method for the magnitude and frequency of pressure change was proposed and the propagating characteristics of pressure wave was investigated. By statistical analysis for the measured results, a pressure loading spectrum for the high speed train was given. The proposed method can also be used to estimate the pressure loading spectrum for new high speed line at design stage combined with the results of train performance simulation.

Discrete event simulation of Maglev transport considering traffic waves

  • Cha, Moo Hyun;Mun, Duhwan
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.4
    • /
    • pp.233-242
    • /
    • 2014
  • A magnetically levitated vehicle (Maglev) system is under commercialization as a new transportation system in Korea. The Maglev is operated by an unmanned automatic control system. Therefore, the plan of train operation should be carefully established and validated in advance. In general, when making a train operation plan, statistically predicted traffic data is used. However, a traffic wave often occurs in real train service, and demand-driven simulation technology is required to review a train operation plan and service quality considering traffic waves. We propose a method and model to simulate Maglev operation considering continuous demand changes. For this purpose, we employed a discrete event model that is suitable for modeling the behavior of railway passenger transportation. We modeled the system hierarchically using discrete event system specification (DEVS) formalism. In addition, through implementation and an experiment using the DEVSim++ simulation environment, we tested the feasibility of the proposed model. Our experimental results also verified that our demand-driven simulation technology can be used for a priori review of train operation plans and strategies.

Theoretical Study on the Characteristics of Pressure Change of High Speed Train in Tunnels (터널통과시 고속 철도 압력 변동 특성에 관한 이론적 연구)

  • Nam, Seong-Won;Kwon, Hyeok-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1042-1050
    • /
    • 2004
  • Theoretical study has been conducted to clarify pressure characteristics of KTX(Korea Train eXpress) in tunnel. The severe pressure change in tunnel may give rise to the ear-discomfort for passenger and fatigue for car body. The external and internal pressure of rolling stock have been measured by using the running test with atmospheric pressure sensors and portable data acquisition system in high speed train. In this study, the tunnels from 200m to 4000m in length have been chosen for the investigation of tunnel length effects. We found that there are similar patterns of external pressure change for each critical tunnel length. The critical tunnel lengths are governed by train speed, train length and sonic velocity. And, the patterns of pressure wave in tunnel are classified into eight groups.