• Title/Summary/Keyword: wave-energy

Search Result 2,426, Processing Time 0.032 seconds

Experimental study of wave energy extraction by a dual-buoy heaving system

  • Kim, J.;Koh, H.J.;Cho, I.H.;Kim, M.H.;Kweon, H.M.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.25-34
    • /
    • 2017
  • The concentric dual-buoy Wave Energy Converter (WEC), which consists of external buoy (hallow-cylinder) with toroidal appendage and cylindrical internal buoy within the moon-pool is suggested in this research and its performance in various wave conditions is studied. The Linear Electric Generator (LEG), consisting of a permanent magnet and coils, is used as a direct Power Take-Off (PTO) system. To maximize the electrical energy extracted from the PTO system, the relative heave motions between the dual buoys must be highly amplified by the multiple resonance phenomena of dual-buoy and internal-fluid motions. The high-performance range can be widened by distributing those natural frequencies with respect to the peak frequency of the wave spectrum. The performance of the newly developed dual-buoy WEC was measured throughout the systematic 1:5.95-model test in regular and irregular waves conducted in a wave tank at Seoul National University. The model-test results are also validated by an independently developed numerical method.

Experimental Study on Hydrodynamic Performance and Wave Power Takeoff for Heaving Wave Energy Converter (수직 진자형 파력 발전 장치의 운동성능 및 파력 추출에 관한 실험적 연구)

  • Kim, Sung-Jae;Koo, WeonCheol;Min, Eun-Hong;Jang, Hoyun;Youn, Donghyup;Lee, Byeongseong
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.361-366
    • /
    • 2016
  • The aim of this study was to experimentally investigate the hydrodynamic performance of a hemispheric wave energy converter (WEC) and its wave power takeoff. The WEC is a heaving body-type point absorber with a hydraulic-pump power take-off (PTO) system. The hydraulic PTO system consists of a hydraulic cylinder, hydraulic motor, and generator, with consideration given to the hydraulic pressure and flow rate. Two body model shapes, including the original hemisphere and a bottom-chopped hemisphere, were considered. The heave RAOs of the two models were evaluated for various body drafts. The effects of the hydraulic PTO system on the RAOs were also investigated.

Study on the propagation mechanism of stress wave in underground mining

  • Liu, Fei;Li, Lianghui
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.145-154
    • /
    • 2020
  • For the influence of the propagation law of stress wave at the coal-rock interface during the pre-blasting of the top coal in top coal mining, the ANSYS-LS/DYNA fluid-solid coupling algorithm was used to numerical calculation and the life-death element method was used to simulate the propagation of explosion cracks. The equation of the crushing zone and the fracturing zone were derived. The results were calculated and showed that the crushing radius is 14.6 cm and the fracturing radius is 35.8 cm. With the increase of the angles between the borehole and the coal-rock interface, the vibration velocity of the coal particles and the rock particles at the interface decreases gradually, and the transmission coefficient of the stress wave from the coal mass into the rock mass decreases gradually. When the angle between the borehole and the coal-rock interface is 0°, the overall crushing degree is about 11% and up to the largest. With the increase of the distance from the charge to the coal-rock interface, the stress wave transmission coefficient and the crushing degree of the coal-rock are gradually decreased. At the distance of 50 cm, the crushing degree of the coal-rock reached the maximum of approximately 12.3%.

Removal of Flooding in a PEM Fuel Cell at Cathode by Flexural Wave

  • Byun, Sun-Joon;Kwak, Dong-Kurl
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.104-114
    • /
    • 2019
  • Energy is an essential driving force for modern society. In particular, electricity has become the standard source of power for almost every aspect of life. Electric power runs lights, televisions, cell phones, laptops, etc. However, it has become apparent that the current methods of producing this most valuable commodity combustion of fossil fuels are of limited supply and has become detrimental for the Earth's environment. It is also self-evident, given the fact that these resources are non-renewable, that these sources of energy will eventually run out. One of the most promising alternatives to the burning of fossil fuel in the production of electric power is the proton exchange membrane (PEM) fuel cell. The PEM fuel cell is environmentally friendly and achieves much higher efficiencies than a combustion engine. Water management is an important issue of PEM fuel cell operation. Water is the product of the electrochemical reactions inside fuel cell. If liquid water accumulation becomes excessive in a fuel cell, water columns will clog the gas flow channel. This condition is referred to as flooding. A number of researchers have examined the water removal methods in order to improve the performance. In this paper, a new water removal method that investigates the use of vibro-acoustic methods is presented. Piezo-actuators are devices to generate the flexural wave and are attached at end of a cathode bipolar plate. The "flexural wave" is used to impart energy to resting droplets and thus cause movement of the droplets in the direction of the traveling wave.

Experimental and numerical validation of guided wave based on time-reversal for evaluating grouting defects of multi-interface sleeve

  • Jiahe Liu;Li Tang;Dongsheng Li;Wei Shen
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.41-53
    • /
    • 2024
  • Grouting sleeves are an essential connecting component of prefabricated components, and the quality of grouting has a significant influence on structural integrity and seismic performance. The embedded grouting sleeve (EGS)'s grouting defects are highly undetectable and random, and no effective monitoring method exists. This paper proposes an ultrasonic guided wave method and provides a set of guidelines for selecting the optimal frequency and suitable period for the EGS. The optimal frequency was determined by considering the group velocity, wave structure, and wave attenuation of the selected mode. Guided waves are prone to multi-modality, modal conversion, energy leakage, and dispersion in the EGS, which is a multi-layer structure. Therefore, a time-reversal (TR)-based multi-mode focusing and dispersion automatic compensation technology is introduced to eliminate the multi-mode phase difference in the EGS. First, the influence of defects on guided waves is analyzed according to the TR coefficient. Second, two major types of damage indicators, namely, the time domain and the wavelet packet energy, are constructed according to the influence method. The constructed wavelet packet energy indicator is more sensitive to the changes of defecting than the conventional time-domain similarity indicator. Both numerical and experimental results show that the proposed method is feasible and beneficial for the detection and quantitative estimation of the grouting defects of the EGS.

Energy extraction from the motion of an oscillating water column

  • Wang, Hao;Falzarano, Jeffrey M.
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.327-348
    • /
    • 2013
  • An Oscillating Water Column (OWC) is a relatively practical and convenient device that converts wave energy to a usable form, which is electricity. The OWC is kept inside a fixed truncated vertical cylinder, which is a hollow structure with one open end submerged in the water and with an air turbine at the top. This research adopts potential theory and Galerkin methods to solve the fluid motion inside the OWC. Using an air-water interaction model, OWC design for energy extraction from regular wave is also explored. The hydrodynamic coefficients of the scattering and radiation potentials are solved for using the Galerkin approximation. The numerical results for the free surface elevation have been verified by a series of experiments conducted in the University of New Orleans towing tank. The effect of varying geometric parameters on the response amplitude operator (RAO) of the OWC is studied and modification of the equation for evaluating the natural frequency of the OWC is made. Using the model of air-water interaction under certain wave parameters and OWC geometric parameters, a computer program is developed to calculate the energy output from the system.

Modeling and analysis of a cliff-mounted piezoelectric sea-wave energy absorption system

  • Athanassoulis, G.A.;Mamis, K.I.
    • Coupled systems mechanics
    • /
    • v.2 no.1
    • /
    • pp.53-83
    • /
    • 2013
  • Sea waves induce significant pressures on coastal surfaces, especially on rocky vertical cliffs or breakwater structures (Peregrine 2003). In the present work, this hydrodynamic pressure is considered as the excitation acting on a piezoelectric material sheet, installed on a vertical cliff, and connected to an external electric circuit (on land). The whole hydro/piezo/electric system is modeled in the context of linear wave theory. The piezoelectric elements are assumed to be small plates, possibly of stack configuration, under a specific wiring. They are connected with an external circuit, modeled by a complex impedance, as usually happens in preliminary studies (Liang and Liao 2011). The piezoelectric elements are subjected to thickness-mode vibrations under the influence of incident harmonic water waves. Full, kinematic and dynamic, coupling is implemented along the water-solid interface, using propagation and evanescent modes (Athanassoulis and Belibassakis 1999). For most energetically interesting conditions the long-wave theory is valid, making the effect of evanescent modes negligible, and permitting us to calculate a closed-form solution for the efficiency of the energy harvesting system. It is found that the efficiency is dependent on two dimensionless hydro/piezo/electric parameters, and may become significant (as high as 30 - 50%) for appropriate combinations of parameter values, which, however, corresponds to exotically flexible piezoelectric materials. The existence or the possibility of constructing such kind of materials formulates a question to material scientists.

Internal Oscillating Flow Field Analysis in Air Chamber of Wave Energy Conversion (파력발전장치 공기실 내 왕복유동장 해석)

  • Moon, Jae-Seung;Hyun, Beom-Soo;Hong, Key-Yong;Shin, Seung-Ho;Kim, Gil-Won
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.427-430
    • /
    • 2006
  • This paper deals with the internal oscillating flaw in air chamber and duct of an OWC-type wave energy converter by numerical analysis using commercial CFD code, FLUENT. Whole oscillating flaw from OWC-type chamber to outlet through duct was solved by unsteady analysis in order that performance of wave energy conversion was made better. Results show that whole oscillating flaw field of this system in unsteady condition. Duct shape at setting place of turbine is curved with elbow, because profile of inlet condition to turbine is important in its efficiency. This paper is found internal flaw in air chamber and duct. Also, this research was found effect of duct shape.

  • PDF

Numerical optimization of Wells turbine for wave energy extraction

  • Halder, Paresh;Rhee, Shin Hyung;Samad, Abdus
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.11-24
    • /
    • 2017
  • The present work focuses multi-objective optimization of blade sweep for a Wells turbine. The blade-sweep parameters at the mid and the tip sections are selected as design variables. The peak-torque coefficient and the corresponding efficiency are the objective functions, which are maximized. The numerical analysis has been carried out by solving 3D RANS equations based on k-w SST turbulence model. Nine design points are selected within a design space and the simulations are run. Based on the computational results, surrogate-based weighted average models are constructed and the population based multi-objective evolutionary algorithm gave Pareto optimal solutions. The peak-torque coefficient and the corresponding efficiency are enhanced, and the results are analysed using CFD simulations. Two extreme designs in the Pareto solutions show that the peak-torque-coefficient is increased by 28.28% and the corresponding efficiency is decreased by 13.5%. A detailed flow analysis shows the separation phenomena change the turbine performance.

Numerical and experimental study on hydrodynamic performance of multi-level OWEC

  • Jungrungruengtaworn, Sirirat;Reabroy, Ratthakrit;Thaweewat, Nonthipat;Hyun, Beom-Soo
    • Ocean Systems Engineering
    • /
    • v.10 no.4
    • /
    • pp.359-371
    • /
    • 2020
  • The performance of a multi-level overtopping wave energy converter (OWEC) has been numerically and experimentally investigated in a two-dimensional wave tank in order to study the effects of opening width of additional reservoirs. The device is a fixed OWEC consisting of an inclined ramp together with several reservoirs at different levels. A particle-based numerical simulation utilizing the Lattice Boltzmann Method (LBM) is used to simulate the flow behavior around the OWEC. Additionally, an experimental model is also built and tested in a small wave flume in order to validate the numerical results. A comparison in energy captured performance between single-level and multi-level devices has been proposed using the hydraulic efficiency. The enhancement of power capture performance is accomplished by increasing an overtopping flow rate captured by the extra reservoirs. However, a noticeably large opening of the extra reservoirs can result in a reduction in the power efficiency. The overtopping flow behavior into the reservoirs is also presented and discussed. Moreover, the results of hydrodynamic performance are compared with a similar study, of which a similar tendency is achieved. Nevertheless, the LBM simulations consume less computational time in both pre-processing and calculating phases.