• Title/Summary/Keyword: wave-energy

Search Result 2,430, Processing Time 0.034 seconds

Open Boundary Treatment of Nonlinear Waves in the Shallow Water Region by Boundary Element Method (경계요소법에 의한 파동장에 있어서 비선형파의 가상경계처리)

  • ;Kiyoshi Takikawa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.3
    • /
    • pp.176-183
    • /
    • 1991
  • In this paper. boundary element method is applied to the analysis of nonlinear free surface wave. A particular concern is given to the treatment of the open boundaries at the in-flow boundary and out-flow boundary, which uses the mass-flux and energy-flux considering the continuity of fluid. By assuming the fluid to be inviscid and incompressible and the flow to be irrotational. the problem is formulated mathematically as a two-dimentional nonlinear problem in terms of a velocity potential. The equation(Laplace equation) and the boundary conditions are transformed into two boundary integral equations. Due to the nonlinearity of the problem. the incremental method is used for the numerical analysis. Numerical results obtained by the present boundary element method are compared with those obtained by the finite element method and also with experimental values.

  • PDF

Introduction of Ultraviolet/Infrared Flame Detector and Method for False Detection Prevention (자외선/적외선 불꽃감지기 소개 및 오동작 방지를 위한 연구)

  • Lim, Byung-Hyun;Ko, Nak-Yong;Hwang, Jong-Sun;Kim, Yeong-Min;Kim, Jong-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.8-11
    • /
    • 2003
  • We propose that when combustible burn with contain carbon, introduce fire detector with sensor of private-use detectable light energy as infrared and ultraviolet in energy of electromagnetic-wave type radiate from flame, method for correct discrimination to resemble fire produce false alarm of detector such as sun light, hot object radiation, are welding. This research using infrared sensor is pyroelectric infrared sensor based black body radiation theory. Ultraviolet sensor is uv Tron using gas multiplication effect to current discharge and photoelectric effect of metal. To have high sensibility and to gain proper output voltage, it has high responsive performance. This research introduced UV/IR compound type flame detector and proposed method of false alarm reduced to resemble fire. The result propres the prevention and extinction of fire technique degree, certificated operation of detector.

  • PDF

Rotor-floater-mooring coupled dynamic analysis of mono-column-TLP-type FOWT (Floating Offshore Wind Turbine)

  • Bae, Y.H.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.95-111
    • /
    • 2011
  • Increasing numbers of floating offshore wind turbines are planned and designed these days due to their high potential in massive generation of clean energy from water depth deeper than 50 m. In the present study, a numerical prediction tool has been developed for the fully-coupled dynamic analysis of FOWTs in time domain including aero-blade-tower dynamics and control, mooring dynamics, and platform motions. In particular, the focus of the present study is paid to the dynamic coupling between the rotor and floater and the coupled case is compared against the uncoupled case so that their dynamic coupling effects can be identified. For this purpose, a mono-column mini TLP with 1.5MW turbine for 80m water depth is selected as an example. The time histories and spectra of the FOWT motions and accelerations as well as tether top-tensions are presented for the given collinear wind-wave condition. When compared with the uncoupled analysis, both standard deviations and maximum values of the floater-responses/tower-accelerations and tether tensions are appreciably increased as a result of the rotor-floater dynamic coupling, which may influence the overall design including fatigue-life estimation especially when larger blades are to be used.

A Study on EVA Optical Characteristics By Generation Temperature of PV module (Photovoltaic module의 발전 온도에 따른 EVA 광 특성 연구)

  • Woo, Sung-Cheol;Jung, Tae-Hee;Min, Youn-Ki;Kang, Ki-Hwan;Ahn, Hyeung-Ken;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.31-35
    • /
    • 2011
  • Photovoltaic modules are well known to be one of the most eco generation of electricity. But usually study solar cell. Otherwise, PV modules are also important in power generation. We have to check other subsidiary materials. In this work benefit of using optically superior encapsulation materials(EVA) in generation temperature is demonstrated. Optical characterization of three EVA products demonstrates reduced transmission in the visible ray region of the solar spectrum. It will have a decisive effect to the module efficiency. Test is shown reduction of reflectance and transmittance. Reflections is dependent on the low iron glass. It can be seen between a specific wave length(240~350mm) about 1%. Transmittance in the entire ray region of light is markedly reduced to depending on the temperature rise. The graph is shown optical properties on EVA. Transmission was reduced. about 1%.

  • PDF

Mode Propagation in X-Ray Waveguides

  • Choi, J.;Jung, J.;Kwon, T.
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.112-117
    • /
    • 2008
  • Single-mode propagation conditions of X-ray waveguides are investigated by numerical calculations in order to understand the importance of waveguide design parameters, such as core thickness and the optical constants of waveguide materials, on the transmission and coherence properties of the waveguide. The simulation code for mode analyzing is developed based on a numerical solution of the parabolic wave equation. The initial boundary value problem is solved numerically using a finite-difference scheme based on the Crank-Nicolson scheme. The E-field intensities in a core layer are calculated at an X-ray energy of 8.0 keV for air and beryllium(Be) core waveguides with different cladding layers such as Pt, Au, W, Ni and Si to determine the dependence on waveguide materials. The highest E-field intensity radiated at the exit of the waveguide is obtained from the Pt cladded beryllium core with a thickness of 20 nm. However, the intensity from the air core waveguide with Pt cladding reaches 64% of the Be-Pt waveguide. The dependence on the core thickness, which is the major parameter used to generate a single mode in the waveguide, is investigated for the air-Pt, and Be-Pt waveguides at an X-ray energy of 8.0 keV. The mode profiles at the exit are shown for the single mode at a thickness of up to 20 nm for the air-Pt and the Be-Pt waveguides.

Synthesis of Nano-Scale Photocatalyic TiO2 Powder Doped with Ag by Sonochemistry Reaction (초음파화학 반응에 의한 Ag 도핑 광촉매용 나노 TiO2 분말의 합성)

  • Cho, Sung-Hun;Lee, Soo-Whon
    • Korean Journal of Materials Research
    • /
    • v.19 no.3
    • /
    • pp.169-173
    • /
    • 2009
  • In chemistry, the study of sonochemistry is concerned with understanding the effect of sonic waves and wave properties on chemical systems. In the area of chemical kinetics, it has been observed that ultrasound can greatly enhance chemical reactivity in a number of systems by as much as a million-fold. Nano-technology is a super microscopic technology in which structures of 100 nanometers or smaller can be investigated. This technology has been used to develop $TiO_2$ materials and $TiO_2$ devices of that size. Thus far, electrochemistry methods and photochemistry methods have generally been used to create $TiO_2$ nano-size particles. However, these methods are complicated and create pollutants as a by-product. In the present study, nano-scale silver particles (5 nm) were prepared in a sonochemistry method. Sonochemistry deals with mechanical energy that is provided by the collapse of cavitation bubbles that form in solutions during exposure to ultrasound. $TiO_2$ powders 25 nm in size doped with Ag were formed using an ultrasonic sound technique. The experimental results showed the high possibility of removing pollution through the action of a photocatalyst. This powder synthesis technique can be considered as an environmentally friendly powder-forming processing owing to its energy saving characteristics.

A Mechanism of the Bound Exciton Interaction with Longitudinal Optical Lattice Vibrations in Cathodoluminescence of Cadmium-Sulphide

  • Chung, Kie-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.9-13
    • /
    • 1974
  • The exciton emission spectra of CdS single crystals excited by electrons were measured at 80$^{\circ}$K as a function o: the wave length. The measured dissociation energy of exciton bound to neutral donor was 2.0 meV, compared to the corresponding theoretical value of 2.4 to 3.2 meV. An exciton bound to neutral donor and a longitudinal optical (LO) phonon may not interact, but a free exciton dissociated from a neutral donor and a LO phonon is expected to interact each other. Therefore the origin of the spectra consisting of interaction term was located at the spectrum consisting of a free exciton dissociated from a neutral donor (I$_2$d). From the analysis of the spectra the LO phonon energy of CdS was found to be 40.5 meV.

  • PDF

Photoconductive Characteristics of CdSe Thin Films (CdSe 박막의 광도전 특성)

  • Jhoun, Choon-Saing;Kim, Dong-Suk;Huh, Chang-Su
    • Solar Energy
    • /
    • v.10 no.2
    • /
    • pp.59-68
    • /
    • 1990
  • In this paper, photoconductive pure CdSe films and CdSe films doped with various impurities are fabricated by vaccum deposition and subsequent heat treatment in vaccum. The substrate is kept at $200^{\circ}C$ during deposition and temperature generally makes the films more photoconductive. The photocurrent of the films increase linearly with light illumination. Spectral response of photoconductivity is measured at the wave length range of 380nm to 850nm. The maximum response is found at 700nm in pure CdSe films, but it shifts to the longer wavelength in impurity-doped CdSe films. Photo-response of the pure CdSe films are more sensitive at lower temperature, while the impurity-doped films show the opposite trend.

  • PDF

Combustion Instability of Gas Turbine with Segmented Dynamic Thermo-Acoustic Model under Load Follow-Up (이산형 열-음향 모델을 이용한 부하 변동시 가스터빈 연소 불안정 특성)

  • JEONG, JIWOONG;HAN, JAEYOUNG;JEONG, JINHEE;YU, SANGSEOK
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.5
    • /
    • pp.538-548
    • /
    • 2018
  • The thermo-acoustic instability in the combustion process of a gas turbine is caused by the interaction of the heat release mechanism and the pressure perturbation. These acoustic vibrations cause fatigue failure of the combustor and decrease the combustion efficiency. This study is to develop a segmented dynamic thermo-acoustic model to understand combustion instability of gas turbine. Therefore, this study required a dynamic analysis rather than static analysis, and developed a segmented model that can analyze the performance of the system over time using the Matlab/Simulink. The developed model can confirm the thermo-acoustic combustion instability and exhaust gas concentration in the combustion chamber according to the equivalent ratio change, and confirm the thermo-acoustic combustion instability for the inlet temperature and the load changes. As a result, segmented dynamic thermo-acoustic model has been developed to analyze combustion instability under the operating condition.

Comparison of Performance Characteristics in the Chevron Type Plate Heat Exchanger with Performance Correlation (성능 예측 상관식에 따른 쉐브론 형태 판형 열교환기 성능 특성 비교)

  • Bae, Kyung-Jin;An, Sung-Kuk;Cho, Hyun-Uk;Nam, Sang-Chul;Cho, Hong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.535-542
    • /
    • 2011
  • The performance of a plate heat exchanger for using liquid solution in the absorption chiller-heater was analyzed. The model was developed by using the various performance prediction correlations. The performance characteristics of the plate heat exchanger with the mass flow rate ratio was verified by using experimental data. To investigate performance of plate heat exchanger with geometry variables, the chevron angle, corrugated wave length, and corrugation depth were changed. As a result, the capacity of Kim and Martin correlation models was similar with the experimental data, and the capacity difference was less than 2%. Besides, the pressure drop of Marin correlation model showed a similar variation with experimental data, and the difference of pressure drop was less than 1.5 kPa.