• Title/Summary/Keyword: wave-energy

Search Result 2,426, Processing Time 0.028 seconds

Active damage localization technique based on energy propagation of Lamb waves

  • Wang, Lei;Yuan, F.G.
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.201-217
    • /
    • 2007
  • An active damage detection technique is introduced to locate damage in an isotropic plate using Lamb waves. This technique uses a time-domain energy model of Lamb waves in plates that the wave amplitude inversely decays with the propagation distance along a ray direction. Accordingly the damage localization is formulated as a least-squares problem to minimize an error function between the model and the measured data. An active sensing system with integrated actuators/sensors is controlled to excite/receive $A_0$ mode of Lamb waves in the plate. Scattered wave signals from the damage can be obtained by subtracting the baseline signal of the undamaged plate from the recorded signal of the damaged plate. In the experimental study, after collecting the scattered wave signals, a discrete wavelet transform (DWT) is employed to extract the first scattered wave pack from the damage, then an iterative method is derived to solve the least-squares problem for locating the damage. Since this method does not rely on time-of-flight but wave energy measurement, it is more robust, reliable, and noise-tolerant. Both numerical and experimental examples are performed to verify the efficiency and accuracy of the method, and the results demonstrate that the estimated damage position stably converges to the targeted damage.

Dynamic Design of a Mass-Spring Type Translational Wave Energy Converter (파력발전용 병진 질량-스프링식 파력 변환장치의 동적설계)

  • Choi, Young-Hyu;Lee, Chang-Jo;Hong, Dae-Sun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.182-189
    • /
    • 2012
  • This study suggests a dynamic design process for deciding properly design parameters of a mass-spring type Wave Energy Converter (WEC) to achieve sufficient energy conversion from wave to power generator. The WEC mechanism, in this research, consists of a rigid sprung body, a platform, suspension springs and dampers. The rigid sprung body is supported on the platform via springs and dampers and vibrates translationally in the heave direction under wave excitation. At last the resulting heave motion of the sprung body is transmitted to rotating motion of the electric generator by rack and pinion, and transmission gears. For the purpose of vibration analysis, the WEC mechanism has been simply modelled as a mass-spring-damper system under harmonic base excitation. Its maximum displacement transmissibility and steady state response can be determined by using elementary vibration theory if the harmonic ocean wave data were provided. With the vibration analysis results, the suggested dynamic design process of WEC can determine all the design parameters of the WEC mechanism, such as sprung body mass, suspension spring constant, and damping coefficient that can give sufficient relative displacement transmissibility and the associated inertia moment to drive the electric generator and transmission gears.

Analysis on Mechanism of Wave Attenuation under Wave-Current Interaction (파랑-흐름의 상호작용에 의한 파랑변형 메커니즘 분석)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.645-650
    • /
    • 2016
  • In this study, we conducted a numerical simulation using Navier-Stokes Solver (HYMO-WASS-3D) in order to analyze wave attenuation under wave-current interaction found in existing hydraulic experiments. It showed that wave energy and wave height are reduced as the wave propagates in coexisting fields between waves and currents. And the wave attenuation became more serious as the velocity of current and thus turbulence intensity were increased at wave-current coexisting field. As well, the wave attenuation became more serious with lower wave height and shorter period when the wave propagates the same distance under interactions between waves and currents.

A Practical Application of Multiple Wave Models to the Small Fishery Harbor Entrance

  • Jung, Jae-Hyun;Lee, Joong-Woo;Jeon, Min-Su;Kang, Seok-Jin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.7
    • /
    • pp.579-587
    • /
    • 2007
  • Samchunpo(Sin Hyang) Harbor is located in the bay of Sa Chun, the central south coast of Korean peninsula. The harbor and coastal boundaries have been protecting by natural coastal islands and shoals. Currently, The Sin Hyang harbor needs maintenance and renovation of the sheltered structures against the weather deterioration and typhoon damages. Consequently to support this, the calculation of accurate design wave through the typhoon wave attack is necessary. In this study, calculation of incident wave condition is simulated using steady state spectrum energy wave model(wide area wave model) from 50 years return wave condition. And this simulation results in wide offshore area were used for the input of the extended mild slope wave model at the narrow coastal area. Finally, the calculation of design wave at Sin Hyang harbor entrance was induced by Boussinesq wave model(detail area wave model) simulation. The numerical model system was able to simulate wave transformations from generation scale to shoreline or harbor impact. We hope these results will be helpful to the engineers doing placement, design, orientation, and evaluation of a wide range of potential solutions in this area.

Effect of Wind-Wave Misalignment and Yaw Error on Power Performance and Dynamic Response of 15 MW Floating Offshore Wind Turbine (바람-파랑 오정렬과 요 오차가 15 MW급 부유식 해상풍력터빈의 출력 성능과 동적 응답에 미치는 영향)

  • Sangwon Lee;Seongkeon Kim;Bumsuk Kim
    • New & Renewable Energy
    • /
    • v.20 no.2
    • /
    • pp.26-34
    • /
    • 2024
  • Floating offshore wind turbines (FOWTs) have been developed to overcome large water depths and leverage the abundant wind resource in deep seas. However, wind-wave misalignment can occur depending on the weather conditions, and most megawatt (MW)-class turbines are horizontal-axis wind turbines subjected to yaw errors. Therefore, the power performance and dynamic response of super-large FOWTs exposed simultaneously to these external conditions must be analyzed. In this study, several scenarios combining wind-wave misalignment and yaw error were considered. The IEA 15 MW reference FOWT (v1.1.2) and OpenFAST (v3.4.1) were used to perform numerical simulations. The results show that the power performance was affected more significantly by the yaw error; therefore, the generator power reduction and variability increased significantly. However, the dynamic response was affected more significantly by the wind-wave misalignment increased; thus, the change in the platform 6-DOF and tower loads (top and base) increased significantly. These results can be facilitate improvements to the power performance and structural integrity of FOWTs during the design process.

A Study on Estimation of Added Resistance in Waves Using Modified Radiated Energy Method and Short Wave Correction Method (수정된 방사 에너지법과 단파장 영역 보정법을 이용한 파랑 중 부가저항 추정에 관한 연구)

  • Oh, Seunghoon;Yang, Jinho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.1
    • /
    • pp.62-68
    • /
    • 2016
  • A simple calculation tool for added resistance in waves is developed to utilize for initial design or embedded module for navigation support system. In order to select an appropriate calculation method for added resistance in waves, three methods (drift method, integrated pressure method, radiated energy method) based on strip method are applied to Wigley I and KVLCC2. The methods for added resistance in waves give the underestimated results because it is difficult to consider nonlinear effects due to reflected wave. We apply asymptotic (Faltinsen's method) and empirical formula (NMRI's method) to improve the accuracy for short wave length region. In comparison with experimental results, the combination of radiated energy method and short wave correction method of NMRI is the most reasonable. However, a simple sum of results calculated by two methods gives rise to the overestimation of added resistance for short wave length region because added resistance of radiated energy method exits in total reflection region. To overcome this problem, modified radiated energy method is proposed using correction coefficient defined by reflection coefficient of NMRI's method. Finally, added resistance in regular waves is composed of added resistance of modified radiated energy method and that of short wave correction method of NMRI. Estimated added resistance in regular waves is validated by comparison with experimental results of other research groups.

Formulation for the Relativistic Blast Waves and GRB Afterglows

  • Uhm, Z. Lucas
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.81.1-81.1
    • /
    • 2010
  • We present a detailed description of the blast-wave modeling technique for a very general class of GRB explosions. Providing a simple method of evaluating the blast energy, we demonstrate that a common approximation of pressure balance for the blast wave violates the energy-conservation law significantly for adiabatic blast waves. We show that the energy-violation problem is successfully resolved by the "mechanical model" that we developed. GRB afterglow lightcurves that are produced by the forward and reverse shock waves of the blast wave are presented.

  • PDF

Study on Electrical Linear Generator Containing Heaving Buoy and Its Applications (부이 내장형 선형발전기 및 그 응용 연구)

  • Cha, Kyungho;Kim, Jung-Taek
    • New & Renewable Energy
    • /
    • v.9 no.4
    • /
    • pp.25-31
    • /
    • 2013
  • This paper describes an electrical linear generator (IntELG) based on permanent magnets, containing heaving buoy, and its applications for the floating wave energy converters riding in parallel waves. The permanent magnets are integrated with the heaving buoy as a component and the integrated component is configured within the cylindrical IntELG to be filled with fluid. Thus, the IntELG can effectively be applied for the power-take-off of the floating wave energy converter riding in parallel waves. Typical applications are exampled with the Pelamis and Anaconda and they are investigated for the diversely redundant power source of nuclear power plant and the cooperation with submerged tunnel(s).

Performance of Oscillating Water Column type Wave Energy Converter in Oblique Waves (사파중 진동수주형 파력발전장치의 성능평가)

  • Jin, Jiyuan;Hyun, Beom-Soo;Hong, Keyyong;Liu, Zhen
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.182-188
    • /
    • 2014
  • In an oscillating water column (OWC)-type wave energy conversion system, the performance of the OWC chamber depends on the chamber shape, as well as the incident wave direction and pressure drop produced by the turbine. Although the previous studies on OWC chambers have focused on wave absorbing performance in ideal operating conditions, incident waves do not always arrive normally to the OWC chamber in real sea conditions, especially in fixed devices. The present study deals with experiments and numerical calculations to investigate the effects of wave direction on the performance of the OWC chamber. The experiments were carried out in a three-dimensional wave basin for five different wave directions, including the effect of turbine using the corresponding orifice. The wave elevation inside the chamber was measured at the center point under various incident wave conditions. The numerical study was conducted by using a numerical wave tank-based volume-of-fluid model to compare the results with experimental data and to reveal the detailed flows around the chamber.

Pressure pain threshold and visual analogue scale changes in the high and low energy extracorporeal shock wave

  • Yang, You-Jin;Lee, Seung-Joon;Choi, Matthew
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.2
    • /
    • pp.142-147
    • /
    • 2014
  • Objective: This study aims to investigate high energy and low energy extracorporeal shockwave therapy (ESWT) and which one is more effective for shoulder pain. Design: Single blind randomized controlled trial. Methods: Fifty two subjects with upper trapezius (UT) trigger point (TrP) participated in this study. They were allocated to high energy (n=26) and low energy group (n=26). This study applies ESWT and investigates the changes of pressure pain threshold (PPT) and visual analogue scale (VAS). The high and low energy groups received focused piezo electric type ESWT 4 Hz, 1,000 pulses and 0.351 and $0.092mJ/mm^2$ respectively. Outcome measures of PPT and pain was measured by algometer and pain VAS. These measurements were performed before and after treatment. Results: The PPT value was significantly increased in both groups after treatment (p<0.05) and VAS scores were significantly decreased after treatment in both groups (p<0.05). However, there were no significant differences between groups. Conclusions: ESWT is an effective treatment for the application of the UT TrP. Although there were significant effects of extracorporeal shock wave therapy on PPT and VAS scores, there were no signficant differences between high and low energy extracorporeal shock wave therapy.