• Title/Summary/Keyword: wave-current fields

Search Result 71, Processing Time 0.024 seconds

Analysis of the Electromagnetic Scattering by a Tapered Resistive Strip Grating with Zero Resistivity at the Strip-Edges On a Grounded Dielectric Plane (접지된 유전체층 위에 저항띠 양끝에서 0으로 변하는 저항율을 갖는 저항띠 격자구조에서의 전자파 산란 해석)

  • 정오현;윤의중;양승인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11A
    • /
    • pp.883-890
    • /
    • 2003
  • In this paper, Electromagnetic scattering problems by a resistive strip grating with tapered resistivity on a grounded dielectric plane according as strip width and spacing, relative permittivity and thickness of dielectric layers, and incident angles of a electric wave are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) Known as a numerical procedure. The scattered electromagnetic fields are expanded in a series of floguet mode functions. The boundary conditions are applied to obtain the unknown field coefficients and the resistive boundary condition is used for the relationship between the tangential electric field and the electric current density on the strip. The tapered resistivity of resistive strips varies zero resistivity at strip edges. Then the induced surface current density on the resistive strip is expanded in a series of Chebyshev polynomials of the second kind. The numerical results of the geometrically in this paper are compared with those for the existing uniform resistivity and perfectly conducting strip. The numerical results of the normalized reflected power for conductive strips case with zero resistivity in this paper show in good agreement with those of existing paper.

Analysis of Electromagnetic Scattering by Resistive Strip Grating with Zero Resistivity at the Strip-Edges On a Grounded 2 Dielectric Layers (접지된 2개의 유전층위에 저항띠 양끝에서 0으로 변하는 저항띠 격자구조에서의 전자파산란 해석)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.152-158
    • /
    • 2006
  • In this paper, electromagnetic scattering problems by a resistive strip grating with zero resistivity at the strip-edges on a grounded 2 dielectric layers according as strip width and spacing, relative permittivity, thickness of dielectric layers, and incident angles of a electric wave are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) known as a numerical procedure. The scattered electromagnetic fields are expanded in a series of floguet mode functions. The boundary conditions are applied to obtain the unknown field coefficients and the resistive boundary condition is used for the relationship between the tangential electric field and the electric current density on the strip. The tapered resistivity of resistive strips varies zero resistivity at strip edges. Then the induced surface current density on the resistive strip is expanded in a series of Chebyshev polynomials of the second kind. The normalized reflected power with zero resistivity in this paper show in good agreement with those of existing paper.

  • PDF

ANALYSES OF ANNULAR LINEAR INDUCTION PUMP CHARACTERISTICS USING A TIME-HARMONIC FINITE DIFFERENCE ANALYSIS

  • Seong, Seung-Hwan;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.213-224
    • /
    • 2008
  • The pumping of coolant in a liquid metal fast reactor may be performed with an annular linear induction electro-magnetic (EM) pump. Linear induction pumps use a traveling magnetic field wave created by poly-phase currents, and the induced currents and their associated magnetic field generate a Lorentz force, whose effect can be the pumping of the liquid metal. The flow behaviors in the pump are very complex, including a time-varying Lorentz force and pressure pulsation, because an induction EM pump has time-varying magnetic fields and the induced convective currents that originate from the flow of the liquid metal. These phenomena lead to an instability problem in the pump arising from the changes of the generated Lorentz forces along the pump's geometry. Therefore, a magneto-hydro-dynamics (MHD) analysis is required for the design and operation of a linear induction EM pump. We have developed a time-harmonic 2-dimensional axisymmetry MHD analysis method based on the Maxwell equations. This paper describes the analysis and numerical method for obtaining solutions for some MHD parameters in an induction EM pump. Experimental test results obtained from an induction EM pump of CLIP-150 at the STC "Sintez," D.V. Efremov Institute of Electro-physical Apparatus in St. Petersburg were used to validate the method. In addition, we investigated some characteristics of a linear induction EM pump, such as the effect of the convective current and the double supply frequency (DSF) pressure pulsation. This simple model overestimated the convective eddy current generated from the sodium flow in the pump channel; however, it had a similar tendency for the measured data of the pump performance through a comparison with the experimental data. Considering its simplicity, it could be a base model for designing an EM pump and for evaluating the MHD flow in an EM pump.

Analysis of the Electromagnetic Scattering by Conducting Strip Gratings with 2 Dielectric Layers On a Grounded Plane (접지평면위에 2개의 유전체층을 가지는 저항띠 격자구조에서의 전자파산란 해석)

  • 윤의중
    • The Journal of Information Technology
    • /
    • v.4 no.3
    • /
    • pp.77-86
    • /
    • 2001
  • In this paper, Electromagnetic scattering problem by a resistive strip grating with 2 dielectric layers on a ground plane according as resistivity of resistive strip, relative permittivity and thickness of dielectric layers, and incident angles of a electric wave is analyzed by applying the PMM (Point Matching Method) known as a numerical procedure. The scattered electromagnetic fields are expanded in a series of floquet mode functions. The boundary conditions are applied to obtain the unknown field coefficients and the resistive boundary condition is used for the relationship between the tangential electric field and the electric current density on the strip. According as the relative permittivity and the thickness of layers are increased, the values of the geometrically normalized reflected power have a high value and the values of strip width are moved toward a high value going from left to right. When the resistivity of this paper has a value of zero, the numerical results of the geometrically normalized reflected power show in good agreement with those by the PMM of existing paper. Then, the most energys of the sharp variation point in minimum values of the geometrically normalized reflected power are scattered in direction of the other angles except incident angle.

  • PDF

Analysis of Domestic Heatwave Research Trends (국내 폭염 연구 동향 분석)

  • Baek, Jun-Beom;Kwon, Yongseok
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.755-768
    • /
    • 2021
  • Purpose: Due to the nature of heatwave research, where research is conducted for a variety of subjects and purposes, it is important to anticipate research trends and development directions in order to improve the quality of the research. Therefore, in order to provide basic data that can suggest the current status of heatwave research and the direction of future research, we tried to examine the trends of heatwave-related research. Method: Heatwave studies published in academic journals registered with the National Research Foundation of Korea from 2011 to 2020 were analyzed by classifying them according to the research period, the purpose of the study, the research subjects and the research method. Result: The main research results are as follows. First, as interest in heatwaves increases, the number of heatwave studies also increases. Second, the purpose of heatwave research is biased and needs to be studied from various perspectives. Third, although various research subjects were used, an even study was not conducted. Fourth, under the influence of the research purpose, the bias of the research method appeared together. Conclusion: The damage caused by the heat wave is persistent and has a widespread impact. In order to manage, prevent, and respond to such heat waves as disasters, equal research should be conducted in various fields.

Characteristics of Velocity Fields around 3-Dimensional Permeable Submerged Breakwaters under the Conditions of Salient Formation (설상사주 형성조건 하에 있는 3차원투과성잠제 주변에서 내부유속변동의 특성)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;An, Sung-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.399-409
    • /
    • 2017
  • This study numerically investigates the characteristics of the velocity field including the average flow velocity, longshore current and turbulent kinetic energy acting as the main external forces of the salient formed behind the permeable submerged breakwaters. Shoreline response is also predicted by the longshore-induced flux. In this paper, a three-dimensional numerical wave tank based on the OLAFOAM, CFD open source code, is utilized to simulate the velocity field around permeable submerged breakwaters under the formation condition of salient. The characteristics of the velocity field around permeable submerged breakwaters with respect to the gap width between breakwaters and the installing position away from the shoreline under a range of regular waves for different wave height are evaluated. The numerical results revealed that as the gap width between breakwaters increases, the longshore currents become stronger. Furthermore, as the gap width becomes narrower, the point where flow converges moves from the center of the breakwater to the head part. As a result, it is possible to understand the formation of the salient formed behind the submerged breakwaters. In addition, it was found that the longshore currents caused by the gap width between breakwaters and the installation position away from the shoreline are closely related to the turbulent kinetic energy.

A Comparative Analysis on the Competitiveness of Korean and Japanese Fashion Industry by Applying Generalized Double Diamond Model

  • Son, Mi Young;Kenji, Yokoyama
    • Asia Marketing Journal
    • /
    • v.15 no.1
    • /
    • pp.57-81
    • /
    • 2013
  • The purpose of this paper is to seek ways to improve the competitiveness of Korea's fashion industry by utilizing the source of competitiveness of Japan's fashion industry, which represents the world's leading countries in terms of fashion, so that Korea can better enter the global fashion market. The study shall first compare the competitiveness of the Japanese and Korean fashion industries by utilizing the generalized double diamond model; second, provide an understanding of what the Japanese fashion industry can offer to Korean fashion industry and companies - that is, understand what the Japanese fashion industry's competitive edge is; and third, study the kind of global competitiveness that Korea's fashion industry must achieve. To adopt a generalized double diamond model to compare the competitiveness of the Korean and Japanese fashion industries, we selected 31 sub-variables to act as determinants of the model. That is, we extracted 31sub-variables by doing research of literature to analyze national competitiveness of the fashion industries. To measure these 31 sub-variables, secondary data was gathered. We collected data related to each sub-variable from various sources of Korea and Japan. And to calculate the competitiveness index, we took three steps with reference to previous studies. We found that status of the fashion industry of the two countries as it stands. That is, Japan is an advanced country of which fashion industry is domestic market-oriented while Korea is a small open economy that mainly focuses on the foreign market. Out of 31 proxy variables, Korea's fashion industry shows higher measurements relating to production and export than Japan, but Japan's fashion industry reports higher measurements than Korea in the fields of R&D, design and brand power, the rate of value added, the efficiency of companies and globalization. In order for Korea's fashion industry to achieve competitiveness in the global market, it should pursue the following development direction. First, it is very difficult for Korea to follow the footsteps of the U.S. and Japanese fashion industries that are able to take advantage of economies of scale, because Korea is smaller than those countries. Therefore, in the case of small economies such as Singapore, strengthening of international activities will practically improve domestic determinants that Korea should improve its domestic diamond by enhancing the current competitiveness of its international diamond. In other words, Korea needs to further endeavor to develop and expand global resources and markets as well as improve its competitiveness in terms of R&D, design and brand power, the rate of value-added, and the efficiency of companies. As the Korean fashion industry shows relatively advanced level of information technology and the fashion education system, it has considerable potential to grow. Korea is expected to have a huge growth potential since it has relatively higher level of information technology, fashion education system and activities than those of Japan in both the domestic diamond and international diamond. In particular, a better environment is laid out before Korea to gain competitiveness in the fashion industry due to the recently growing influence of the Korean Wave that Korea is expected to grow as a leader in the Asian market as well as in the global market.

  • PDF

Evaluation of Antenna Pattern Measurement of HF Radar using Drone (드론을 활용한 고주파 레이다의 안테나 패턴 측정(APM) 가능성 검토)

  • Dawoon Jung;Jae Yeob Kim;Kyu-Min Song
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.109-120
    • /
    • 2023
  • The High-Frequency Radar (HFR) is an equipment designed to measure real-time surface ocean currents in broad maritime areas.It emits radio waves at a specific frequency (HF) towards the sea surface and analyzes the backscattered waves to measure surface current vectors (Crombie, 1955; Barrick, 1972).The Seasonde HF Radar from Codar, utilized in this study, determines the speed and location of radial currents by analyzing the Bragg peak intensity of transmitted and received waves from an omnidirectional antenna and employing the Multiple Signal Classification (MUSIC) algorithm. The generated currents are initially considered ideal patterns without taking into account the characteristics of the observed electromagnetic wave propagation environment. To correct this, Antenna Pattern Measurement (APM) is performed, measuring the strength of signals at various positions received by the antenna and calculating the corrected measured vector to radial currents.The APM principle involves modifying the position and phase information of the currents based on the measured signal strength at each location. Typically, experiments are conducted by installing an antenna on a ship (Kim et al., 2022). However, using a ship introduces various environmental constraints, such as weather conditions and maritime situations. To reduce dependence on maritime conditions and enhance economic efficiency, this study explores the possibility of using unmanned aerial vehicles (drones) for APM. The research conducted APM experiments using a high-frequency radar installed at Dangsa Lighthouse in Dangsa-ri, Wando County, Jeollanam-do. The study compared and analyzed the results of APM experiments using ships and drones, utilizing the calculated radial currents and surface current fields obtained from each experiment.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

Sensory Information Processing

  • Yoshimoto, Chiyoshi
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 1985
  • The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70$\pm$1.32mmHg/min)compared to CF dialyzers(4.32$\pm$0.55mmHg/min)(p<0.05). However, there was no observable difference in the UFR between the two dialyzers. Neither APD nor UFR showed any significant increase with an increasing number of reuses for up to more than 20reuses. A substantial number of failures observed in APD(larger than 20mmHe/min)on the reused dialyzers(2 out of 40 CP and S out 26 C-DAK) were attributed to the Possible damage on the fibers. The CF 15-11 HFDs which failed APD test did not show changes in the UFR compared to normal dialyzers indicating that APD is a more sensitive test than UFR test to evaluate the integrity of the fibers. 30527 T00401030527 ^x For quantitative measurement of reflected light from a clinical diagnostic strip, a prototype old reflectance photometer was designed. The strip loader and cassette were made to obtain more accurate reflectance parameters. The strip was illuminated at 45˚c through optical fiber and the intensity of reflected light was determined at rectanguLat angle using a photodiode. The kubelka-munk coefficient and reflection optical density were determined ar four different wavelengths(500, 550, 570 and 610nm) for blood glucose strip. For higher concentration than 300mg/41 about glucose, a saturation state of abforbance was observed at 500, 550 and 570nm. The correlation between glucose concentration and parameters was the best at 610nm. 30535 T00401030535 ^x Radiation-induced fibrosarcoma tumors were grown on the flanks of C3H mice. The mice were divided into two groups. One group was injected with Photofrin II, intravenously (2.5mg/kg body weight). The other group received no Photofrin II. Mice from both groups were irradialed for approximately 15 minutes at 100, 300, or 500 mW/cm2 with the argon (488nm/514.5 nm), dye(628nm) and gold vapor (pulsed 628 nm) laser light. A photosensitizer behaved as an added absorber. Under our experimental conditions, the presence of Photolfrin II increased surface temperature by at least 40% and the temperature rise due to 300 mW/cm2 irradiation exceeded values for hyperthermia. Light and temperature distributions with depth were estimated by a computer model. The model demonstrated the influence of wavelength on the thermal process and proved to be a valuable tool to investigate internal temperature rise. 30536 T00401030536 ^x We investigated the structural geometry of thirty-eight Korean femurs. The purpose of this study is to identify major geometrical differences between Korean femurs 3nd others that we believe belong to Caucasians so that we would be able to get insights into the femoral component design that fits Asians including Koreans. We utilized computerized tomography (CT) images of femurs extracted from cadavers. The CT images were transformed into bitmap data by using a film scanner, and then analyzed by using a commercially available software called Image v.1.0 and a Macintosh IIci computer.The resulting data were compared with already published data. The major results show that the geometry of the Korean femurs is significantly different from that of Caucasians: (1) the anteversion angle and the canal flare index are greater by the amount of approximately 8˚ and 0.5, respectively, (2) the shape of the isthmus cross section is more round, and (3) the distance between the teaser trochanter and the proximal border of the isthmus is shelter by about 15 mm. The results suggested that the femoral component suitable for Asians should be different from the currently-used components designed and manufactured mostly by European or American companies. 30537 T00401030537 ^x It is well known that nonlinear propagation characteristics of the wave in the tissue may give very useful information for the medical diagnoisis. In this paper, a new method to detect nonlinear propagation characteristics of the internal vibration in the tissue for the low frequency mechanical vibration by using bispectral analysis is proposed. In the method, low frequency vibration of f0( = 100Hz) is applied on the surface of the object, and the waveform of the internal vibration x (t) is measured from Doppler frequency modulation of silmultaneously transmitted probing ultrasonic waves. Then, the bispectra of the signal x (t) at the frequencies (f0, f0) and (f0, 2f0) are calculated to estimate the nonlinear propagation characteristics as their magnitude ratio, w here since bispectrum is free from the gaussian additive noise we can get the value with high S/N. Basic experimental system is constructed by using 3.0 MHz probing ultrasonic waves and the several experiments are carried out for some phantoms. Results show the superiority of the proposed method to the conventional method using power spectrum and also its usefulness for the tissue characterization. 30541 T00401030541 ^x This paper describes the implementation of a computerized radial pulse diagnosis by aids of a clinical expert. On this base, we composed of the radial pulse diagnosis system in korean traditional medicine. The system composed of a radial pulse wave detection system and a radial pulse diagnosis system. With a detection system, we detected Inyoung and Cheongu radial pulse wave and processed it. Then, we have got the characteristic parameters of radial pulse wave and also quantified that according to the method of Inyoung-Cheongu Comparison Radial Pulse Diagnosis. We defined the jugement standard of radial pulse diagnosis system and then we confirmed the possibility for realization of automatic radial pulse diagnosis in korean traditional medicine. 30545 T00401030545 ^x Microspheres are expected to be applied to biomedical areas such as solid-phase immunoassays, drug delivery systems, immunomagnetic cell separation. To synthesize microspheres for biomedical application, "two stage shot growth method" was developed. The uniformity ratio of synthesized microspheres was always smaller than 1.05. And the surface charge density (or the number of ionizable functional groups) of the microspheres synthesized by "two stage shot growth method" was 6~13 times higher than that of the microspheres synthesized by conventional seeded batch copolymerization. As a previous step for biomedical application, adsorption experiments of bovine albumin on microspheres were carried out under various conditions. The maximum adsorbed amount was obtained in the neighborhood of pH 4.5. Isoelectric point of bovine albumin is pH 5.0, so experimental result shows that it shifted to acid area. The adsorption isotherm was obtained, the plateau region was always reached at 2.Og/L (bulk concentration of bovine albumin).The effect of the kind and the amount of surface functional group was also examined. 30575 T00401030575 ^x A medical image workstation was developed using multimedia technique. The system based on PC-486DX was designed to acquire medical images produced by medical imaging instruments and related audio information, that is, doctors' reporting results. Input information was processed and analyzed, then the results were presented in the form of graph and animation. All the informations of the system were hierarchically related with the image as the apex. Processing and analysis algorithms were implemented so that the diagnostic accuracy could be improved. The diagnosed information can be transferred for patient diagnosis through LAN(local area network). 30592 T00401030592 ^x In the conventional infrared imaging system, complex infrared lens systems are usually used for directing collimated narrow infrared beams into the high speed 2-dimensional optic scanner. In this paper, a simple reflective infrared optic system with a 2-dimensional optic scanner is proposed for the realization of medical infrared thermography system. It has been experimentally proven that the intfrared thermography system composed of the proposed optic system has the temperature resolution of 0.1˚c under the spatial resolution of lmrad, the image matrix size of 256 X 240, and tile imaging time of 4 seconds. 30593 T00401030593 ^x In this paper, MIIS (Medical Image Information System) has been designed and implemented using INGRES RDBMS, which is based on a client/server architecture. The implemented system allows users to register and retrieve patient information, medical images and diagnostic reports. It also provides the function to display these information on workstation windows simultaneously by using the designed menu-driven graphic user interface. The medical image compression/decompression techniques are implemented and integrated into the medical image database system for the efficient data storage and the fast access through the network. 30594 T00401030594 ^x In this paper, computerized BEAM was implemented for the space domain analysis of EEG. Trans-formation from temporal summation to two-dimensional mappings is formed by 4 nearest point inter-polaton method. Methods of representation of BEAM are two. One is dot density method which classify brain electrical potential 9 levels by dot density of gray levels and the other is colour method which classify brain electrical 12 levels by red-green colours. In this BEAM, instantaneous change and average energy distribution over any arbitrary time interval of brain electrical activity could be observed and analyzed easily. In the frequency domain, the distribution of energy spectrum of a special band can easily be distinguished normality and abnormality. 30608 T00401030608 ^x Laboratory information system (LIS) is a key tool to manage laboratory data in clinical pathology. Our department has developed an information system for routine hematology using down-sized computer system. We have used an IBM 486 compatible PC with 16MB main memory, 210 MB hard disk drive, 9 RS-232C port and 24 pin dot printer. The operating system and database management system were SCO UNIX and SCO foxbase, respectively. For program development, we used Xbase language provided by SCO foxbase. The C language was used for interface purpose. To make the system use friendly, pull-down menu was used. The system connected to our hospital information system via application program interface (API), so the information related to patient and request details is automatically transmitted to our computer. Our system interfaced with fwd complete blood count analyzers(Sysmex NE-8000 and Coulter STKS) for unidirectional data tansmission from analyzer to computer. The authors suggests that this system based on down-sized computer could provide a progressive approach to total LIS based on local area network, and the implemented system could serve as a model for other hospital's LIS for routine hematology. 30609 T00401030609 ^x To develop an artificial bone substitute that is gradually degraded and replaced by the regenerated natural bone, the authors designed a composite that is consisted of calcium phosphate and collagen. To use as the structural matrix of the composite, collagen was purified from human umbilical cord. The obtained collagen was treated by pepsin to remove telopeptides, and finally, the immune-free atelocollagen was produced: The cross linked atelocollagen was highly resistant to the collagenase induced collagenolysis. The cross linked collagen demonstrated an improved tensile strength. 30618 T00401030618 ^x This paper is a study on the design of adptive filter for QRS complex detection. We propose a simple adaptive algorithm to increase capability of noise cancelation in QRS complex detection with two stage adaptive filter. At the first stage, background noise is removed and at the next stage, only spectrum of QRS complex components is passed. Two adaptive filters can afford to keep track of the changes of both noise and QRS complex. Each adaptive filter consists of prediction error filter and FIR filter The impulse response of FIR filter uses coefficients of prediction error filter. The detection rates for 105 and 108 of MIT/BIH data base were 99.3% and 97.4% respectively. 30619 T00401030619 ^x To develop an artificial bone substitute that is gradually degraded and replaced by the regenerated natural bone, the authors designed and produced a composite that is consisted of calcium phosphate and collagen. Human umbilical cord origin pepsin treated type I atelocollagen was used as the structural matrix, by which sintered or non-sintered carbonate apatite was encapsulated to form an inorganic-organic composite. With cross linking atelocollagen by UV ray irradiation, the resistance to both compressive and tensile strength was increased. Collagen degradation by the collagenase induced collagenolysis was also decreased. 30620 T00401030620 ^x We have developed a monoleaflet polymer valve as an inexpensive and viable alternative, especially for short-term use in the ventricular assist device or total artificial heart. The frame and leaflet of the polymer valve were made from polyurethane, To evaluate the hemodynamic performance of the polymer valve a comparative study of flow dynamics past a polymer valve and a St. Jude Medical prosthetic valve under physiological pulsatile flow conditions in vitro was made. Comparisons between the valves were made on the transvalvular pressure drop, regurgitation volume and maximum valve opening area. The polymer valve showed smaller regurgitation volume and transvalvular pressure drop compared to the mechanical valve at higher heart rate. The results showed that the functional characteristics of the polymer valve compared favorably with those of the mechanical valve at higher heart rate. 30621 T00401030621 ^x Explosive evaporative removal process of biological tissue by absorption of a CW laser has been simulated by using gelatin and a multimode Nd:YAG laser. Because the point of maximun temperature of laser-irradiated gelatin exists below the surface due to surface cooling, evaporation at the boiling temperature is made explosively from below the surface. The important parameters of this process are the conduction loss to laser power absorption (defined as the conduction-to-laser power parameter, Nk), the convection heat transfer at the surface to conduction loss (defined as Bi), dimensionless extinction coefficient (defined as Br.), and dimensionless irradiation time (defined as Fo). Dependence of Fo on Nk and Bi has been observed by experiment, and the results have been compared with the numerical results obtained by solving a 2-dimensional conduction equation. Fo and explosion depth (from the surface to the point of maximun temperature) are increased when Nk and Bi are increased.To find out the minimum laser power for explosive evaporative removal process, steady state analysis has been also made. The limit of Nk to induce evaporative removal, which is proportional to the inverse of the laser power, has been obtained. 30622 T00401030622 ^x N1 and N2 gross neural action potentials were measured from the round window of the guinea pig cochlea at the onset of the acoustic stimuli. N1-N2 audiograms were made by means of regulating stimulant intensities in order to produce constant N1-N2 potentials as criteria for different input tone pip frequencies. The lowest threshold was measured with an input tone pip I5 dB SPL in intensity and 12 KHz in frequency when the animal was in normal physiological condition. The procedure of experimental measurements is explained in detail. This experimental approach is very useful for the investigation of the Cochlear function. Both noN1inear and active functions of the Cochlea can be monitored by N1-N2 audiograms. 30623 T00401030623 ^x In electrical impedance tomography(EIT), we use boundary current and voltage measurements toprovide the information about the cross-sectional distribution of electrical impedance or resistivity. One of the major problems in EIT has been the inaccessibility of internal voltage or current data in finding the internal impedance values. We propose a new image reconstruction method using internal current density data measured by NMR. We obtained a two-dimensional current density distribution within a phantom by processing the real and imaginary MR images from a 4.77 NMR machine. We implemented a resistivity mage reconstruction algorithm using the finite element method and sensitivity matrix. We presented computer simulation results of the mage reconstruction algorithm and furture direction of the research. 30624 T00401030624 ^x A new method of digital image analysis technique for discrimination of cancer cell was presented in this paper. The object image was the Thyroid eland cells image that was diagnosed as normal and abnormal (two types of abnormal: follicular neoplastic cell, and papillary neoplastic cell), respectively. By using the proposed region segmentation algorithm, the cells were segmented into nucleus. The 16 feature parameters were used to calculate the features of each nucleus. A9 a consequence of using dominant feature parameters method proposed in this paper, discrimination rate of 91.11% was obtained for Thyroid Gland cells. 30625 T00401030625 ^x An electrical stimulator was designed to induce locomotion for paraplegic patients caused by central nervous system injury. Optimal stimulus parameters, which can minimize muscle fatigue and can achieve effective muscle contraction were determined in slow and fast muscles in Sprague-Dawley rats. Stimulus patterns of our stimulator were designed to simulate electromyographic activity monitored during locomotion of normal subjects. Muscle types of the lower extremity were classified according to their mechanical property of contraction, which are slow muscle (msoleus m.) and fast muscle (medial gastrocneminus m., rectus femoris m., vastus lateralis m.). Optimal parameters of electrical stimulation for slow muscles were 20 Hz, 0.2 ms square pulse. For fast muscle, 40 Hz, 0.3 ms square pulse was optimal to produce repeated contraction. Higher stimulus intensity was required when synergistic muscles were stimulated simultaneously than when they were stimulated individually. Electrical stimulation for each muscle was designed to generate bipedal locomotion, so that individual muscles alternate contraction and relaxation to simulate stance and swing phases. Portable electrical stimulator with 16 channels built in microprocessor was constructed and applied to paraplegic patients due to lumbar cord injury. The electrical stimulator restored partially gait function in paraplegic patients. 30626 T00401030626 ^x Two-Dimensional modelling of the Cochlear biomechanics is presented in this paper. The Laplace partial differential equation which represents the fluid mechanics of the Cochlea has been transformed into two-dimensional electrical transmission line. The procedure of this transformation is explained in detail. The comparison between one and two dimensional models is also presented. This electrical modelling of the basilar membrane (BM) is clearly useful for the next approach to the further. Development of active elements which are essential in the producing of the sharp tuning of the BM. This paper shows that two-dimension model is qualitatively better than one-dimensional model both in amplitude and phase responses of the BM displacement. The present model is only for frequency response. However because the model is electrical, the two-dimensional transmission line model can be extended to time response without any difficult. 30627 T00401030627 ^x A method has been proposed for the fully automatic detection of left ventricular endocardial boundary in 2D short axis echocardiogram using geometric model. The procedure has the following three distinct stages. First, the initial center is estimated by the initial center estimation algorithm which is applied to decimated image. Second, the center estimation algorithm is applied to original image and then best-fit elliptic model estimation is processed. Third, best-fit boundary is detected by the cost function which is based on the best-fit elliptic model. The proposed method shows effective result without manual intervention by a human operator. 30628 T00401030628 ^x The intelligent trajectory control method that controls moving direction and average velocity for a prosthetic arm is proposed by pattern recognition and force estimations using EMG signals. Also, we propose the real time trajectory planning method which generates continuous accelleration paths using 3 stage linear filters to minimize the impact to human body induced by arm motions and to reduce the muscle fatigue. We use combination of MLP and fuzzy filter for pattern recognition to estimate the direction of a muscle and Hogan's method for the force estimation. EMG signals are acquired by using a amputation simulator and 2 dimensional joystick motion. The simulation results of proposed prosthetic arm control system using the EMf signals show that the arm is effectively followed the desired trajectory depended on estimated force and direction of muscle movements. 30638 T00401030638 ^x A new neural network architecture for the recognition of patterns from images is proposed, which is partially based on the results of physiological studies. The proposed network is composed of multi-layers and the nerve cells in each layer are connected by spatial filters which approximate receptive fields in optic nerve fields. In the proposed method, patterns recognition for complicated images is carried out using global features as well as local features such as lines and end-points. A new generating method of matched filers representing global features is proposed in this network. 30659 T00401030659 ^x An implementation scheme of the magnetic nerve stimulator using a switching mode power supply is proposed. By using a switching mode power supply rather than a conventional linear power supply for charging high voltage capacitors, the weight and size of the magnetic nerve stimulator can be considerably reduced. Maximum output voltage of the developed magnetic nerve stimulator using the switching mode power supply is 3, 000 volts and switching time is about 100 msec. Experimental results or human nerve stimulations using the developed stimulator are presented. 30768 T00401030768 ^x In this paper, we describe the design methodology and specifications of the developed module-based bedside monitors for patient monitoring. The bedside monitor consists of a main unit and module cases with various parameter modules. The main unit includes a 12.1" TFT color LCD, a main CPU board, and peripherals such as a module controller, Ethernet LAN card, video card, rotate/push button controller, etc. The main unit can connect at maximum three module cases each of which can accommodate up to 7 parameter modules. They include the modules for electrocardiograph, respiration, invasive blood pressure, noninvasive blood pressure, temperature, and SpO2 with Plethysmograph.SpO2 with Plethysmograph.

  • PDF