• Title/Summary/Keyword: wave-by-wave method

Search Result 4,931, Processing Time 0.034 seconds

Structural Health Monitoring Based on Wave Propagation Characteristics (파동전파특성에 기초한 구조 건전도 모니터링)

  • Kim, Seung-Joon;Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.311-314
    • /
    • 2007
  • The experimental method of measuring dynamic properties of structures was presented. The method is based on the flexural wave propagation characteristics. Using the method, change in structural dynamic properties due to damage is measured. The crack has much more significant impact on the strain energy than the inertial effects. From this, the sensitivity of the dynamic stiffness on the crack location is estimated by calculating the strain energy. When the wave propagates, the strain and kinetic energies shows cyclic changed over space. The crack that occurred at locations where the wave energy is in the form of the potential energy affected most significantly the wave propagation characteristics. The effects of crack location on the wave propagation were used to determine the crack location.

  • PDF

Characteristics of Wave Exciting Forces on a Very Large Floating Structure with Submerged-Plate

  • Lee Sang-Min;Hong Chun-Beom
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2061-2067
    • /
    • 2005
  • In this study, we focus on the submerged plate built into the Very Large Floating Structure with the partial openings of Sm long, which enables the reverse flow of incident wave to generate the wave breaking. The purpose of this study is to investigate the characteristics of wave exciting forces acting on the submerged plate and the fore part of VLFS. Firstly, we have carried out the extensive experiments to understand the characteristics of the wave exciting forces. Then we have performed the numerical simulations by applying the Marker and Cell method (MAC method) and compared with the experimental results. We discuss the validity of MAC method and the effects of the submerged plate on the motion of VLFS. As a result, we get the conclusion that the submerged plate is useful for reducing the wave exciting forces acting on the structure behind the submerged plate.

Numerical Computations on Extreme Wave Loads on a Vertical Cylinder Considering Hydroelastic Response (유탄성 응답을 고려한 수직 실린더에 작용하는 극한 파랑 충격력 수치해석)

  • Kyoung, Jo-Hyun;Hong, Sa-Young;Kim, Byoung-Wan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.195-201
    • /
    • 2006
  • The wave load and its influence on the response of offshore structure have been well investigated through the statistical approach based on the linear theory. The linear approach has a limitation to apply the extreme condition such as freak wave, which corresponds to extreme value of wave spectrum. The main topic of present study is to develop an efficient numerical method to predict wave load induced by extreme wave. As a numerical method, finite element method based on variational principle is adopted. The frequency-focusing method is applied to generate the extreme wave in the numerical wave tank. The wave load on the bottom mounted vertical cylinder is investigated. The hydroelastic response of the vertical cylinder is also investigated so as to compare the wave loads with the rigid body case in the extreme wave condition.

  • PDF

Numerical Computations on Hydroelastic Response of a Vertical Cylinder in Extreme Wave Loads (유탄성 응답을 고려한 수직 실린더에 작용하는 극한파의 파랑하중 수치해석)

  • Hong, Sa-Young;Kim, Byoung-Wan;Kyoung, Jo-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.31 no.1 s.117
    • /
    • pp.21-27
    • /
    • 2007
  • The wave load and its influence on the response of offshore structure have been well investigated through the statistical approach based on the linear theory. The linear approach has a limitation to apply the extreme condition such as extreme wave, which corresponds to extreme value of wave spectrum. The main topic of present study is to develop an efficient numerical method to predict wave load induced by extreme wave. As a numerical method, finite element method based on variational principle is adopted. The frequency-focusing method is applied to generate the extreme wave in the numerical wave tank. The wave load on the bottom mounted vertical cylinder is investigated. The hydroelastic response of the vertical cylinder is also investigated so as to compare the wave loads with the rigid body case in the extreme wave condition.

A Study on the Improvement of Fore-Body Shape Considering Breaking Wave Phenomena (쇄파현상을 고려한 선수형상개량법에 관한 연구)

  • K.J.,Kang;E.C.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.1-12
    • /
    • 1989
  • This paper presents a method of minimizing the wave resistance components, due to the linear wave propagating to the far field and the breaking wave in the vicinity of the hull. This method consists of the linear optimization method for the linear wave resistance and the statistical optimization method for the breaking wave resistance through the analysis of the experimental data. For the purpose of the application, a wall-sided model with parabolic waterplane shape was selected as a basic hull form, and two modified hull forms with varied $C_p-curve$ of the fore-body were derived from the linear wave optimization method and the empirical method. The correlation between the linear wave resistance and the breaking wave resistance according to the $C_p-curve$ variation of the fore-body was investigated through the experimental and analytical results for the three hull forms. The fore-body shape optimized by the present method shows the reduction of the wave resistance by 47% comparing to the basic hull form at the design speed($F_n=0.26$).

  • PDF

Wave Deformation by Large Cylindrical Structures (근접설치된 대형구조물에 의한 구조물주변의 파의 변형)

  • 김창제;김정렬
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.1 no.2
    • /
    • pp.61-67
    • /
    • 1995
  • This study examines experimentally and theoretically, the wave deformation by two large cylindrical structure in relation to the case of one structure. The wave height around the structures varies, according to the changes of the incident wave angles, the number of the structure, and the distances between the two structures. The wave deformation around the large cylindrical structures is shown to be well predicted theoretically by the diffraction theory based on the singular point distribution method using a vertical line wave source Green's function.

  • PDF

Development of a Wave Absorbing System Using a Liquefied Sandbed

  • Kang, Yoon-Koo;Takahashi, Shigeo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.9-16
    • /
    • 2006
  • A new wave-absorbing system, called the liquefied sandbed wave barrier (LSWB) system, is currently under development at the Port and Airport Research Institute (PARI) of Japan. The wave damping effect by the LSWB system is substantial, as confirmed by small-scale experiments and FEM numerical calculations, i.e., the wave transmission coefficient of the system is less than 0.2. Here, the results of large-scale experiments arediscussed in view of practical application. Although the LSWB system provides high wave damping, nearly equal to theoretical values, difficulty exists in obtaining a homogeneously liquefied sandbed, due to the occurrence of liquefied sandbed compaction by cyclic wave loading, which in turn, reduces excess pare pressure and the wave damping effect. These two phenomena primarily occur when the sandbed is composed of fine sand with small permeability. Based on experimental results, we propose a design method that includes countermeasures against such problems, and a prototype LSWB system is constructed in a very large wave flume at PARI. Wave damping by the prototype LSWB system is confirmed to be quite stable and high, as predicted by theoretical calculations.

Adaptive Re-reflecting Wave Control in Plunger Type Wave Maker System: Theory

  • Park, Jae-Woong;Lee, Jin-Ho;Park, Gun-Il;Kim, Ki-Jung
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.4
    • /
    • pp.13-18
    • /
    • 2002
  • Active control has been partly applied to suppress the re-reflecting waves in wave basin with plunger-type wave maker to obtain desirable waves. This limitation comes from the non-confirmable theoretical background to the control algorithm. This paper proposes control logic to overcome this drawback, based on the impulse response function for propagating waves between control input and the wave height. The performances have been verified as reasonable in practical application by comparing with the propagating wave components in numerical wave basin, using wave decomposition method. Moreover, the control logic can also give useful wave-absorbing performance after cessation of wave generation.

A Study on Stress Wave Propagation by Finite Element Analysis (유한요소법에 의한 2차원 응력파 전파 해석에 관한 연구)

  • 황갑운;조규종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3369-3376
    • /
    • 1994
  • A finite element program for elastic stress wave propagation is developed in order to investigate the shape of stress field and analysis the magnitude of stress wave intensity at time increment. Accuracy and reliance of the finite element analysis are acquired when the element size is smaller than the product of the stress wave speed and the critical value of increasing time step. In the finite element analysis and theoretical solution, the longitudinal stress wave is propagated to the similar direction of impact load, and the stress wave intensity is expressed in terms of the ratio of propagated area. The direction of shear wave is declined at an angle of 45 degrees compared with longitudinal stress wave and the speed of shear wave is half of the longitudinal stress wave.

Study of Nonlinear Wave Diffraction Using the 2-Dimensional Numerical Wave Tank (2차원 수치 파수조를 이용한 비선형파 산란의 연구)

  • 김용직
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.9-18
    • /
    • 1993
  • Numerical wave tank is a robust tool by which the nonlinear interactions between the body and the free-surface can be treated in time-domain. In this paper, a two-dimensional numerical wave tank based on the Spectral/Boundary-Element Method is developed, and applied successfully to the study of nonlinear wave diffraction around a submerged circular cylinder. Particularly, it is shown that the high-order wave components of significant wave height are developed in the lee-side of the cylinder and that these waves result in a negative drift force on the circular cylider.

  • PDF