• Title/Summary/Keyword: wave-by-wave method

Search Result 4,940, Processing Time 0.034 seconds

Study on the Characteristics of Impulse Wave Discharged from the Tube Exit with Non-Circular Cross-Section (비원형 관출구로부터 방출되는 펄스파의 특성에 관한 연구)

  • Shin, Hyun-Dong;Kweon, Yong-Hun;Lee, Young-Ki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.550-555
    • /
    • 2003
  • When a shock wave arrives at an open end of tube, an impulse wave is discharged from the tube exit and complicated flow is formed near tube exit. The flow field is influenced by the cross-sectional geometry of tube exit, such as circular, square, rectangular, trapezoid and etc. In the current study, three-dimensional propagation characteristics of impulse wave discharged from the tube exit with non-circular cross section are numerically investigated using a CFD method. Total variation diminishing (TVD) scheme is used to solve the three-dimensional, unsteady, compressible Euler equations. Computations are performed for the Mach numbers of the incident shock wave $M_{s}$ below 1.5. The results obtained show that the peak pressure of the impulse wave and propagation directivity depends on the cross-sectional geometry of tube exit and the Mach number of incident shock wave.

  • PDF

R Wave Detection and Advanced Arrhythmia Classification Method through QRS Pattern Considering Complexity in Smart Healthcare Environments (스마트 헬스케어 환경에서 복잡도를 고려한 R파 검출 및 QRS 패턴을 통한 향상된 부정맥 분류 방법)

  • Cho, Iksung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.1
    • /
    • pp.7-14
    • /
    • 2021
  • With the increased attention about healthcare and management of heart diseases, smart healthcare services and related devices have been actively developed recently. R wave is the largest representative signal among ECG signals. R wave detection is very important because it detects QRS pattern and classifies arrhythmia. Several R wave detection algorithms have been proposed with different features, but the remaining problem is their implementation in low-cost portable platforms for real-time applications. In this paper, we propose R wave detection based on optimal threshold and arrhythmia classification through QRS pattern considering complexity in smart healthcare environments. For this purpose, we detected R wave from noise-free ECG signal through the preprocessing method. Also, we classify premature ventricular contraction arrhythmia in realtime through QRS pattern. The performance of R wave detection and premature ventricular contraction arrhythmia classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30 premature ventricular contraction. The achieved scores indicate the average of 98.72% in R wave detection and the rate of 94.28% in PVC classification.

Passive Prandtl-Meyer Expansion Flow with Homogeneous Condensation

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.407-418
    • /
    • 2004
  • Prandtl-Meyer expansion flow with homogeneous condensation is investigated experimentally and by numerical computations. The steady and unsteady periodic behaviors of the diabatic shock wave due to the latent heat released by condensation are considered with a view of technical application to the condensing flow through steam turbine blade passages. A passive control method using a porous wall and cavity underneath is applied to control the diabatic shock wave. Two-dimensional, compressible Navier-Stokes with the nucleation rate equation are numerically solved using a third-order TVD (Total Variation Diminishing) finite difference scheme. The computational results reproduce the measured static pressure distributions in passive and no passive Prandtl-Meyer expansion flows with condensation. From both the experimental and computational results, it is found that the magnitude of steady diabatic shock wave can be considerably reduced by the present passive control method. For no passive control, it is found that the diabatic shock wave due to the heat released by condensation oscillates periodically with a frequency of 2.40㎑. This unsteady periodic motion of the diabatic shock wave can be completely suppressed using the present passive control method.

NEW EXACT SOLUTIONS OF SOME NONLINEAR EVOLUTION EQUATIONS BY SUB-ODE METHOD

  • Lee, Youho;An, Jeong Hyang
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.683-699
    • /
    • 2013
  • In this paper, an improved ($\frac{G^{\prime}}{G}$)-expansion method is proposed for obtaining travelling wave solutions of nonlinear evolution equations. The proposed technique called ($\frac{F}{G}$)-expansion method is more powerful than the method ($\frac{G^{\prime}}{G}$)-expansion method. The efficiency of the method is demonstrated on a variety of nonlinear partial differential equations such as KdV equation, mKd equation and Boussinesq equations. As a result, more travelling wave solutions are obtained including not only all the known solutions but also the computation burden is greatly decreased compared with the existing method. The travelling wave solutions are expressed by the hyperbolic functions and the trigonometric functions. The result reveals that the proposed method is simple and effective, and can be used for many other nonlinear evolutions equations arising in mathematical physics.

A Study of Electromagnetic Wave Absorber with Broad-Band Frequency Characteristics. (광대역특성을 가지는 전파흡수체의 설계에 관한 연구)

  • 이창우;김동일;전상엽;박지용;정세모
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1994.10a
    • /
    • pp.59-68
    • /
    • 1994
  • A wide band design method of an double layerred electromagnetic wave absorber sintered ferrite which has a flat and an anti-grid shape layers is proposed and discussed. The wide band electomagnetic wave absorber can be designed by the equivalent material constants method for the each layer, As a result the wide band ferrite electonmagnetic wave absorber with the band width of 30MHz to 3670, 3680 or 3690MHz were designed under the tolerance limits of -20dB reflectivity.

  • PDF

Design of Broad Band Electromagnetic Wave Absorbers with Cross-Shaped Ferrite. (십자형 광대역 페라이트 전자파흡수체의 설계)

  • 김동일;전상엽;정세모
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1996.09a
    • /
    • pp.125-134
    • /
    • 1996
  • A design method of double layered electromagnetic wave absorbers with cross-shaped ferrite prominence in the second layer which has broad band frequency characteristics was proposed. The broad band electromagnetic wave absorber can be designed under some approximations by the theoretical model using the equivalent material constants method for the second layer. Based on the developed model broad band electromagnetic wave absorbers with excellent reflectivity frequency characteristics in the frequency range of 30MHz to 3,990MHz were designed.

  • PDF

Application based on the strictly combined method of BEM and CADMAS-SURF (BEM-CADMAS-SURF 결합해석법에 기초한 수치조파수조의 응용)

  • Kim, Sang-Ho;Yamashiro, Masaru;Yoshida, Akinori;Shin, Seung-Ho;Hong, Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.65-70
    • /
    • 2009
  • The hybrid numerical model is developed by combining BEM that can calculate the wave motion rapidly under the potential theory and CADMAS-SURF that solves Navier-Stokes equations for the free surface variation near the structure, In the hybrid model the calculation of wave motion in a wide field of wave reflection for deep water area is conducted by BEM but for shallow water area by CADMAS-SURF. Especially the hybrid model can calculate random wave motions for long term period more rapidly with almost similar accuracy than the calculation of wave motion which was carried out by CADMAS-SURF only. In this study the coupling model was applied to the calculation of the strong nonlinear wave motion such as wave runup and overtopping at the coastal structure on the mild-slope bottom and the results of numerical model were compared with the Toyosima's experiments of regular wave runup and Goda's design diagram of ramdom wave overtopping, respectively.

Linear Analysis of Water Surface Waves Generated by Submerged Wave Board Whose Upper and Lower Ends Oscillate Horizontally Freely (상하단이 자유롭게 수평동요하는 수중 조파판에 의해 생성된 수면파의 근사해석)

  • Kim, Hyochul;Oh, Jungkeun;Kwon, Jongoh;Lew, Jae-Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.418-426
    • /
    • 2019
  • To derive a simplified analytic solution which can be utilized as a fundamental solution for the wave maker design, a segment of the wave board has been idealized as a submerged line segment in a two dimensional domain of a wave flume. The lower end of the line segment could be located at arbitrary depth of the wave flume and the upper end of the board could be also submerged to any depth from the free surface. The freely oscillating motion of the wave board is assumed to be defined by determining the condition of horizontal oscillation on both ends differently. The submerged wave board oscillating in horizontal direction could be specified by selecting the amplitude, frequency and the phase lag differently on lower and upper ends of the board. The simplified two dimensional wave generated by the wave board segment has been obtained by the first order perturbation method. It is found that the general solution of the freely oscillating wave board in two dimensional domain could be decomposed into the solution of flap motion with lower end hinge and swing motion with upper end hinge. The case study of the analytic solutions has been carried out to evaluate the effect on the wave height due to the difference of oscillation frequency, phase difference and variation of stroke between for the motion of both ends. It is found that the solution of the freely oscillating wave board could be utilized for the development of high performance wavemaker especially for irregular waves.

Comparison of Shear-wave Velocity Sections from Inverting SH-wave Traveltimes of First Arrivals and Surface Wave Dispersion Curves (SH파 초동주시 역산과 표면파 분산곡선 역산으로부터 구한 횡파속도 단면 비교)

  • Lee, Chang-Min;Kim, Ki-Young
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2005
  • Two-dimensional S-wave velocity sections from SH-wave refraction tomography and surface wave dispersions were obtained by inverting traveltimes of first arrivals and surface wave dispersions, respectively. For the purpose of comparison, a P-wave velocity tomogram was also obtained from a P-wave refraction profiling. P and Rayleigh waves generated by vertical blows on a plate with a sledgehammer were received by 100- and 4.5-Hz geophones, respectively. SH-waves generated by horizontal blows on both sides of a 50 kg timber were received by 8 Hz horizontal geophones. The shear-wave signals were enhanced subtracting data of left-side blows from ones of the right-side blows. Shear-wave velocities from tomography inversion of first-arrival times were compared with ones from inverting dispersion curves of Rayleigh waves. Although the two velocity sections look similar to each other in general, the one from the surface waves tends to have lower velocities. First arrival picking of SH waves is troublesome since P and PS-converted waves arrive earlier than SH waves. Application of the surface wave method, on the other hand, is limited where lateral variation of subsurface tructures is not mild.

  • PDF

Normal Mode Approach to the Stability Analysis of Rossby-Haurwitz Wave

  • Jeong, Hanbyeol;Cheong, Hyeong Bin
    • Journal of the Korean earth science society
    • /
    • v.38 no.3
    • /
    • pp.173-181
    • /
    • 2017
  • The stability of the steady Rossby-Haurwitz wave (R-H wave) in the nondivergent barotropic model (NBM) on the sphere was investigated with the normal mode method. The linearized NBM equation with respect to the R-H wave was formulated into the eigenvalue-eigenvector problem consisting of the huge sparse matrix by expanding the variables with the spherical harmonic functions. It was shown that the definite threshold R-H wave amplitude for instability could be obtained by the normal mode method. It was revealed that some unstable modes were stationary, which tend to amplify without the time change of the spatial structure. The maximum growth rate of the most unstable mode turned out to be in almost linear proportion to the R-H wave amplitude. As a whole, the growth rate of the unstable mode was found to increase with the zonal- and total-wavenumber. The most unstable mode turned out to consist of more-than-one zonal wavenumber, and in some cases, the mode exhibited a discontinuity over the local domain of weak or vanishing flow. The normal mode method developed here could be readily extended to the basic state comprised of multiple zonalwavenumber components as far as the same total wavenumber is given.