• Title/Summary/Keyword: wave property

Search Result 459, Processing Time 0.026 seconds

A Study on the Development of Beijing Fashion Industry in the Wave of Creative Industries

  • Xue, Yang;Pingjian, Guo
    • The International Journal of Costume Culture
    • /
    • v.12 no.1
    • /
    • pp.93-96
    • /
    • 2009
  • The purpose of the research is to explore the development of Beijing fashion industry in the wave of the world-wide creative industries. Two methods are used in this study: discourse analysis and case study. As a form of modern economy, creative industries are the core of originality and intellectual property. It works to develop and use knowledge resource to produce endless new products and new markets, thereby promoting economic and social development. Beijing local garment enterprises should base on the Government's policies and support, creative talent and high technology to cultivate the local fashion brands with the international competition to achieve the clothing industrial upgrading and the building of Beijing as the world-wide fashion capital.

  • PDF

Segmentation of Millimeter-wave Radiometer Image via Classuncertainty and Region-homogeneity

  • Singh, Manoj Kumar;Tiwary, U.S.;Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.862-864
    • /
    • 2003
  • Thresholding is a popular image segmentation method that converts a gray-level image into a binary image. The selection of optimum threshold has remained a challenge over decades. Many image segmentation techniques are developed using information about image in other space rather than the image space itself. Most of the technique based on histogram analysis information-theoretic approaches. In this paper, the criterion function for finding optimal threshold is developed using an intensity-based classuncertainty (a histogram-based property of an image) and region-homogeneity (an image morphology-based property). The theory of the optimum thresholding method is based on postulates that objects manifest themselves with fuzzy boundaries in any digital image acquired by an imaging device. The performance of the proposed method is illustrated on experimental data obtained by W-band millimeter-wave radiometer image under different noise level.

  • PDF

Structural Damage Diagnosis Method by Using the Time-Reversal Property of Guided Waves (유도초음파의 시간.역전 현상을 활용한 구조손상 진단기법)

  • Lee, U-Sik;Choi, Jung-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.64-74
    • /
    • 2010
  • This paper proposes a new TR-based baseline-free SHM technique in which the time-reversal (TR) property of the guided Lamb waves is utilized. The new TR-based SHM technique has two distinct features when compared with the other TR-based SHM techniques: (1) The backward TR process commonly conducted by the measurement is replaced by the computation-based process; (2) In place of the comparison method, the TOF information of the damage signal extracted from the reconstructed signal is used for the damage diagnosis in conjunction with the imaging method which enables us to represent the damage as an image. The proposed TR-based SHM technique is then validated through the damage diagnosis experiment for an aluminum plate with a damage at different locations.

Effect of Moisture Conditions in Soils on Mode Attenuation of Guided Waves in Buried Pipes (지반의 수분 상태에 따른 매립 배관에서의 유도초음파 모드 감쇠 변화)

  • Lee, Ju-Won;Shin, Sung-Woo;Na, Won-Bae;Kim, Young-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.4
    • /
    • pp.42-47
    • /
    • 2010
  • Recently, many techniques have been developed for the inspection of pipelines using guided waves. However, few researches have been made on the application of those techniques for buried underground pipes. Guided wave motions in the buried pipes are somewhat different from those of on-ground pipes which have traction-free (air) boundary condition on outer pipe walls and thus are strongly affected by the mechanical property of the surrounding soils. Therefore, it should be investigated the effect of soil properties on the guided wave behavior in buried pipe. On the other hand, the mechanical property of soil is largely depending on its moisture conditions nevertheless of other influential factors such as void ratio. In this study, the effect of moisture conditions in soils on mode attenuation of guided waves in the buried pipe is investigated. To this end, numerical study is performed to characterize mode attenuation behavior in buried pipes and the effective mode which is suitable for long range inspection is identified.

Magnetic Property Effects of the Strip on Transducer Sensitivity in a Magnetostrictive Strip Type Guided Wave Transducer (자왜 스트립 도파변환기에서 스트립의 자기적 특성이 변환기 감도에 미치는 영향)

  • Kim, Sung-Joon;Choi, Myoung-Seon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.205-210
    • /
    • 2008
  • Magnetic hysteresis loops of a nickel strip and a Fe-Co alloy strip, which have been used in magnetostrictive strip type guided wave transducers for long range ultrasonic testing of pipelines, were measured and then magnetic property effects of a strip on transducer sensitivity were analyzed. The sensitivity of an optimized Fe-Co strip transducer was superior to that of the nickel strip transducer by a factor of about 30. It was shown that this was mainly attributed to the differences in remanence magnetization and coercivity of the two magnetostrictive materials.

Multichannel Analysis of Surface Waves (MASW) Active and Passive Methods

  • Park, Choon-Byong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.17-22
    • /
    • 2006
  • Shear modulus is directly linked to material's stiffness and is one of the most critical engineering parameters. Seismically, shear-wave velocity (Vs) is its best indicator. Although methods like refraction, down-hole, and cross-hole shear-wave surveys can be used, they are generally known to be tougher than any other seismic methods in field operation, data analysis, and overall cost. On the other hand, surface waves, commonly known as ground roll, are always generated in all seismic surveys with the strongest energy, and their propagation velocities are mainly determined by Vs of the medium. Furthermore, sampling depth of a particular frequency component of surface waves is in direct proportion to its wavelength and this property makes the surface wave velocity frequency dependent, i.e., dispersive. The multichannel analysis of surface waves (MASW) method tries to utilize this dispersion property of surface waves for the purpose of Vs profiling in 1-D (depth) or 2-D (depth and surface location) format. The active MASW method generates surface waves actively by using an impact source like sledgehammer, whereas the passive method utilizes those generated passively by cultural (e.g., traffic) or natural (e.g., thunder and tidal motion) activities. Investigation depth is usually shallower than 30 m with the active method, whereas it can reach a few hundred meters with the passive method. Overall procedures with both methods are briefly described.

  • PDF

Determination of Coefficient of Variation of Shear Wave Velocity in Fill Dam for Reliability Based Analysis (신뢰성 기반 해석을 위한 국내 필댐 구성 재료의 전단파 속도 변동계수 결정)

  • Park, Hyung-Choon;Oh, Hyun-Ju
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.4
    • /
    • pp.31-39
    • /
    • 2020
  • Shear wave velocity (or shear modulus) is very important in the evaluation of seismic performance of a fill dam under an earthquake. A shear wave velocity profile can be determined by surface wave method such as HWAW and SASW methods but this profile has uncertainty caused by spatial variation of material property in a fill dam. This uncertainty in shear wave velocity profile could be considered using a coefficient of variation of material property in the reliability based analysis. In this paper, the possible 600 shear wave velocity profiles in the core and rockfill zone of fill dam were generated by the random shear wave velocity profile generation method, proposed by Hwang and Park, based on the field shear wave velocity profiles determined by the HWAW and SASW methods. And, through the statistical analysis of generated shear wave velocity profiles in the fill dam, the coefficient of variation (COV) of shear wave velocity with depth were evaluated for the core and rock filled zone of fill dam in Korea.

$H_\infty$ Depth Controller Design for Underwater Vehicles (수중운동체의 $H_\infty$ 심도제어기 설계)

  • 이만형;정금영;김인수;주효남;양승윤
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.345-355
    • /
    • 2000
  • In this paper, the depth controller of an underwater vehicle based on an $H_\infty$ servo control is designed for the depth keeping of the underwater vehicle under wave disturbances. The depth controller is designed in the form of the $H_\infty$ servo controller, which has robust tracking property, and an $H_\infty$ servo problem is considered for the $H_\infty$ servo controller design. In order to solve the $H_\infty$ servo problem for the underwater vehicle, this problem is modified as an $H_\infty$ control problem for the generalized plant that includes a reference input mode, and a suboptimal solution that satisfies a given performance criteria is calculated with the LMI (Linear Matrix Inequality) approach. The $H_\infty$ servo controller is designed to have robust stability about the perturbation of the parameters of the underwater vehicle and the robust tracking property of the underwater vehicle depth under wave force and moment disturbances. The performance, robustness about the uncertainties, and depth tracking property, of the designed depth controller is evaluated by computer simulation, and finally these simulation results show the usefulness and applicability of the proposed $H_\infty$ depth control system.

  • PDF

Resonances of Unconstrained Compressive, Shear and Flexural Waves in Free-Free Cylinder Specimens (자유단 공시체에 있어서 압축파, 전단파, 휨파의 공진특성)

  • Park, Byoung-Sun;Joh, Sung-Ho;Lee, Sang-Heon;Kang, Tae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.582-589
    • /
    • 2006
  • Shear wane velocity is important property for grasping the dynamic characteristics of material. It is has been used in various fields such as non-destructive testings of structures, seismic analysis of geotechnical structures and maintenance of concrete structure, and etc. Usually, shear wave velocities of rock cores and concrete cylinders are determined by free-free resonance tests, Shear wave measurement in free-free resonance tests is not straightforward, as compared with rod wave and flexural wane measurements. In This study, a new technique using resonance features of flexural and shear waves were proposed in which the nodal points for the fundamental mode of flexural waves were employed to generate and measure the shear waves with the flexural waves minimized. The real measurements for aluminum cylinders proved validity and reliability of the proposed algorithm. In addition to the proposed algorithm, the effects of material properties on elastic-wave velocities in resonance measurements were also studied. In summary, a new framework of the resonance measurements for shear-wave velocity determination was established, based on the results of this thesis.

  • PDF

Property of Wireless Clip-type Pulsimeter by Using a Hall Device and a Permanent Magnet (영구자석과 홀소자를 이용한 무선 집게형 맥진기 특성 연구)

  • Yoon, Woo-Sung;Ji, Jong-Ok;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.6
    • /
    • pp.179-185
    • /
    • 2014
  • The existing USB connection type of the clip-type pulsmeter equipped with a Hall sensor and a permanent magnet does not have any error or malfunction to measure the pulse wave. The property of the wireless networking system communicating the pulse wave data through the wireless LAN communication by combination USB with Ethernet and Ethernet to Wi-Fi converting system instead of existing USB connection method was investigated. There are exited that the patient needs to stay at close site of the desktop PC without USB connector and the wireless transfer and receiver networking system has pulse wave measurement SW to receive the pulse wave data. Thus it is expected that the study becomes helpful to measure and transfer the exact pulse wave of the patient in a comfortable pose at close range.