• Title/Summary/Keyword: wave propagation analysis

Search Result 695, Processing Time 0.026 seconds

A Study on the Characteristics of Pressure Wave Propagation in Spark Ignition Engine Exhaust System (점화기관 배기계의 압력과 전파특성에 관한 연구)

  • 박진용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.72-78
    • /
    • 1996
  • Based on experimental analysis, the characteristics of pulsating pressure wave propagation is clarified by testing of 4-stroke gasoline engine. The pulsating pressure wave in exhaust system is generated gyulsating gas flow due the working of exhaust valve. The pulsating pressure wave is closely concerned to the loss of engine power according to back pressure and exhaust noise. It is difficult to exactly calculate pulsating pressure wave nonlinear effect. Therefore, in the first step for solving these problems, this paper contains experimental model and analysis method which are applied two-port network analysis. Also, it shows coherence function, frequency response function. back pressure, and gradient of temperature in exhaust system.

  • PDF

Simulation of Wave Propagation by Cellular Automata Method (세포자동자법에 의한 파동전파의 시뮬레이션)

  • ;;森下信
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.610-614
    • /
    • 2000
  • Cellular Automata(CA)s are used as a simple mathematical model to investigate self-organization in statistical mechanics, which are originally introduced by von Neumann and S. Ulam at the end of the 1940s. CAs provide a framework for a large class of discrete models with homogeneous interactions, which are characterized by the following fundamental properties: 1) CAs are dynamical systems in which space and time are discrete. 2) The systems consist of a regular grid of cells. 3) Each cell is characterized by a state taken from a finite set of states and updated synchronously in discrete time steps according to a local, identical interaction rule. 4) The state of a cell is determined by the previous states of a surrounding neighborhood of cells. A cellular automaton has been attracted wide interest in modeling physical phenomena, which are described generally, partial differential equations such as diffusion and wave propagation. This paper describes one and two-dimensional analysis of wave propagation phenomena modeled by CA, where the local interaction rules were derived referring to the Lattice Gas Model reported by Chen et al., and also including finite difference scheme. Modeling processes by using CA are discussed and the simulation results of wave propagation with one wave source are compared with that by finite difference method.

  • PDF

Effects of the Equivalence Ratio on Propagation Characteristics of CH4-Air Premixed Flame Intervened by an Ultrasonic Standing Wave (정상초음파가 개재하는 CH4-Air 예혼합화염의 전파특성에 대한 당량비의 영향)

  • Seo, Hang Seok;Lee, Sang Shin;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.16-23
    • /
    • 2013
  • An experimental study has been conducted to investigate the effects of equivalence ratio on the propagation characteristics of $CH_4$-air premixed flame intervened by an ultrasonic standing wave. A Schlieren photography was used for the flame structure visualization, and the flame propagation behavior was investigated in detail throughout the post-processing analysis. It is found that the structural variation of methane/air premixed flame caused by the intervention of ultrasonic standing wave give rise to the enhancement of combustion reaction and flame propagation velocity. Effectiveness of the standing wave on the flame velocity decreases as the equivalence ratio increases. Larger flame velocity with the standing wave becomes undistinguishable in a specific range of equivalence ratios.

Computational analysis of hemodynamics in a human ventricular model (인간 심실모델에서의 혈류역학 해석)

  • Shim, Eun-Bo;Kwon, Soon-Sung;Kim, Yoo-Seok;Jung, Hyung-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2947-2950
    • /
    • 2007
  • A 3D human ventricular model is proposed to simulate an integrative analysis of heart physiology and blood hemodynamics. This consists of the models of electrophysiology of human cells, electric wave propagation of tissue, heart solid mechanics, and 3D blood hemodynamics. The 3D geometry of human heart is discretized to a finite element mesh for the simulation of electric wave propagation and mechanics of heart. In cellular level, excitations by action potential are simulated using the existing human model. Then the contraction mechanics of a whole cell is incorporated to the excitation model. The excitation propagation to ventricular cells are transiently computed in the 3D cardiac tissue using a mono-domain method of electric wave propagation in cardiac tissue. Blood hemodynamics in heart is also considered and incorporated with muscle contraction. We use a PISO type finite element method to simulate the blood hemodynmaics in the human ventricular model.

  • PDF

Numerical Analyses on the Formation, Propagation, and Deformation of Landslide Tsunami Using LS-DYNA and NWT

  • Seo, Minjang;Yeom, Gyeong-Seon;Lee, Changmin;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.11-20
    • /
    • 2022
  • Generally, tsunamis are generated by the rapid crustal movements of the ocean floor. Other factors of tsunami generation include landslides on coastal and ocean floor slopes, glacier collapses, and meteorite collisions. In this study, two numerical analyses were conducted to examine the formation, propagation, and deformation properties of landslide tsunamis. First, LS-DYNA was adopted to simulate the formation and propagation processes of tsunamis generated by dropping rigid bodies. The generated tsunamis had smaller wave heights and wider waveforms during their propagation, and their waveforms and flow velocities resembled those of theoretical solitary waves after a certain distance. Second, after the formation of the landslide tsunami, a tsunami based on the solitary wave approximation theory was generated in a numerical wave tank (NWT) with a computational domain that considered the stability/steady phase. The comparison of two numerical analysis results over a certain distance indicated that the waveform and flow velocity were approximately equal, and the maximum wave pressures acting on the upright wall also exhibited similar distributions. Therefore, an effective numerical model such as LS-DYNA was necessary to analyze the formation and initial deformations of the landslide tsunami, while an NWT with the wave generation method based on the solitary wave approximation theory was sufficient above a certain distance.

A study of the transfer characteristics of pressure waves using two-port network analysis in exhaust system of engine (양단자 회로망 분석을 이용한 기관배기계의 압력파 전달특성에 관한 연구)

  • 이준서;유병구;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.77-84
    • /
    • 1998
  • Based on experimental analysis, the characteristics of pulsating pressure wave propagation is clarified by testing of 4-stroke gasoline engine. The pulsating pressure wave in exhaust system is generated by pulsating gas flow due to working of exhaust valve. The pulsating pressure wave is closely concerned to the loss of engine power according to back pressure and exhaust noise. It is difficult to exactly calculate pulsating pressure wave propagation in exhaust system because of nonlinear effect. Therefore, in the first step for solving these problems, this paper contains experimental model and analysis method which are applied two-port network analysis. Also, it shows coherence function, frequency response function, back pressure, and gradient of temperature in exhaust system.

  • PDF

Numerical Analysis of the Subscale Blast Door Deformation and the Subsequent Blast Wave Propagation through the Tunnel by the External Explosion (외부 폭발에 의한 축소형 방폭문 변형 및 터널 내부 폭풍파 전파 거동의 수치해석)

  • Yun, Kyung Jae;Yoo, Yo-Han
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.462-468
    • /
    • 2016
  • In this paper, we present the results of the numerical analysis employing CONWEP, LS-DYNA FSI(Fluid Structure Interaction), AUTODYN FSI, LS-DYNA ALE(Arbitrary Lagrange Eulerian) and combination of CONWEP and LS-DYNA ALE for blast door fracture and wave propagation through the tunnel by the external explosion. We compared the numerical analysis results with the subscale test data and selected combination of CONWEP and LS-DYNA ALE method as adequate data generation method for the FRM(Fast Running Model) software development. It is expected to save much time and costs by using the numerical simulation data for the various test conditions.

A Study on the Characteristics of Two Dimensional Stress Wave Propagation Using the Distinct Element Method (개별요소법에 의한 이차원 응력파의 전달특성에 관한 연구)

  • 오금호;김문겸;원용호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.406-413
    • /
    • 1998
  • The distinct element method is improved to consider the charateristics of stress wave propagation in media involving the discontinuous faces. The distinct element method has many advantages to analyse the characteristics of the reflection, refraction and deflection of the waves in nonhomogeneous media. The double-suing connection system is adopted instead of the single-spring connection system because the distinct element cannot be used for analysing the contact behavior between the different materials by only one contact spring. For the verification of the improved code, the results of the numerical analysis are compared with that of the photoelastic experiments which are one or two dimensional wave propagation problem of the nonhomogeneous media including the different accoustic impendence material or voids. It is shown that the characteristics of the stress wave propagation in nonhomogeneous media can be simulated appropriately using the improved distinct element method.

  • PDF

Analysis of Propagation of Negative Pressure Wave Due to Leak Through Damaged Hole in High Pressure Piping System (고압 배관망에서 배관 손상에 의한 누출 및 관내 저압확장파의 전파 특성 해석)

  • Kim, Wang-Yeun;Ha, Jong-Man;Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 2008
  • The safe operation of high pressure pipe line systems is of significant importance. Leaks due to faulty operation from the pipelines can lead to considerable product losses and to exposure of community to dangerous gases. There are several leak detection methods of pipeline network which have recently been suggested. The negative pressure wave detection technology, which has advantages of short time detection availability, accurate leaking location estimate capability and cost effective, is concentrated in this study. Theoretical analysis of the flow characteristics for leaking through a hole on the pipe wall has been performed by using Fluent 6.3, commercial CFD package. The results of 3-dimensional analysis near leaking hole confirm the occurrence of negative pressure wave, and the results of 2-dimensional analysis verify the characteristics of propagation of the wave which travels with speed equal to the speed of sound in the pipeline contents. Characteristics of leakage and pressure in a pipe with a hole have been analyzed for the various pipe and hole sizes.

Hybrid parallel smooth particle hydrodynamic for probabilistic tsunami risk assessment and inland inundation

  • Sihombing, Fritz;Torbol, Marco
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.185-194
    • /
    • 2019
  • The probabilistic tsunami risk assessment of large coastal areas is challenging because the inland propagation of a tsunami wave requires an accurate numerical model that takes into account the interaction between the ground, the infrastructures, and the wave itself. Classic mesh-based methods face many challenges in the propagation of a tsunami wave inland due to their ever-moving boundary conditions. In alternative, mesh-less based methods can be used, but they require too much computational power in the far-field. This study proposes a hybrid approach. A mesh-based method propagates the tsunami wave from the far-field to the near-field, where the influence of the sea floor is negligible, and a mesh-less based method, smooth particle hydrodynamic, propagates the wave onto the coast and inland, and takes into account the wave structure interaction. Nowadays, this can be done because the advent of general purpose GPUs made mesh-less methods computationally affordable. The method is used to simulate the inland propagation of the 2004 Indian Ocean tsunami off the coast of Indonesia.