• Title/Summary/Keyword: wave propagation analysis

Search Result 698, Processing Time 0.026 seconds

Interference Analysis in an Urban Mesh Network Operating in the 60-GHz Band

  • Rasekh, Maryam Eslami;Farzaneh, Forouhar
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.775-785
    • /
    • 2013
  • Because of their exclusive features, millimeter wave directive mesh networks can be considered for small cell backhaul support in urban environments. For this purpose, a network of closely spaced stations has been considered with very directive line-of-sight links operating in the 60-GHz band. An attempt is made to evaluate channel response and interference behavior in such a network, taking into account the effect of building blockage. A simple grid of building blocks is considered as the propagation environment, and wave propagation is simulated using 2.5-dimensional (2.5D) ray tracing (2D with ground effect) to calculate the received signal at different nodes in the network. The results are compared with free space predictions and used to evaluate interference at all nodes in the channel and describe certain characteristics of links, such as the delay profile and the correlation length.

Identification on Principle of Acoustic Wave Propagation Characteristics in a Gas Pipe (가스 배관 내부의 음파 전달 특성에 관한 연구)

  • Kim, Min-Soo;Lee, Sang-Kwon;Jang, Sang-Yup;Koh, Jae-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.797-804
    • /
    • 2008
  • In the gas supply pipe, the gas leakage caused by the impact of the construct equipment is serious problem. The identification of the impact position is an important issue and an engineering work. For the basic research of this problem, the principle studies for the acoustic wave propagation in a gas pipe are proceeded in this paper. This principal work is based on the identification of the cut-off frequency associated with major modes of the gas pipe theoretically and experimentally The cut-off frequency is confirmed by STFT and cross-correlation function is used to identify the leakage position.

Wave Propagation in the Strip Plate with Longitudinal Stiffeners

  • Kim, H.;Ryue, J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.102-107
    • /
    • 2013
  • It is important to understand the vibrating behavior of plate structures for many engineering applications. In this study, vibration characteristics of strip plates which have finite width and infinite length are investigated theoretically and numerically. The waveguide finite element approach is used in this study which is known as an effect tool for waveguide structures. WFE method requires only cross-sectional FE model and uses theoretical harmonic solutions for the wave propagation along the longitudinal direction. First of all for a simple strip plate, WFE results are compared with theoretical ones such as the dispersion diagrams, point mobilities, etc. to validate the numerical model. Then in the numerical analysis, the several different types of longitudinal stiffeners are included to the plate model to investigate the effects of the stiffeners in terms of the dispersion curves and mobilities.

  • PDF

Stress wave propagation in composite materials

  • Shen, Siyuan J.;Pfister, Jens C.;Lee, James D.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.4
    • /
    • pp.407-422
    • /
    • 2001
  • The linear constitutive relations and the failure criteria of composite materials made of thermoviscoelastic solids are presented. The post-failure material behavior is proposed and the dynamic finite element equations are formulated. However, a nonlinear term is kept in the energy equation because it represents the effect of the second law of thermodynamics. A general purpose nonlinear three-dimensional dynamic finite element program COMPASS is upgraded and employed in this work to investigate the interdependence among stress wave propagation, stress concentration, failure progression and temperature elevation in composite materials. The consequence of truthfully incorporating the second law of thermodynamics is clearly observed: it will always cause temperature rise if there exists a dynamic mechanical process.

Motion Simulation of FPSO in Waves through Numerical Sensitivity Analysis (수치 민감도 해석을 통한 파랑중 FPSO운동 시뮬레이션)

  • Kim, Je-in;Park, Il-Ryong;Suh, Sung-Bu;Kang, Yong-Duck;Hong, Sa-Young;Nam, Bo-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.166-176
    • /
    • 2018
  • This paper presents a numerical sensitivity analysis for the simulation of the motion performance of an offshore structure in waves using computational fluid dynamics (CFD). Starting with 2D wave simulations with varying numerical parameters such as grid spacing and CFL value, proper numerical conditions were found for accurate wave propagation that avoids numerical diffusion problems. These results were mapped on 2D error distributions of wave amplitude and wave length against the numbers of grids per wave length and per wave height under a given CFL condition. Finally, the 2D numerical sensitivity result was validated through CFD simulation of the motion of a FPSO in waves showing good accuracy in motion RAOs compared with existing potential flow solutions.

Numerical analysis of stress wave of projectile impact composite laminate

  • Zhangxin Guo;Weijing Niu;Junjie Cui;Gin Boay Chai;Yongcun Li;Xiaodong Wu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.107-116
    • /
    • 2023
  • The three-dimensional Hashin criterion and user subroutine VUMAT were used to simulate the damage in the composite layer, and the secondary stress criterion was used to simulate the interlayer failure of the cohesive element of the bonding layer and the propagation characteristics under the layer. The results showed that when the shear stress wave (shear wave) propagates on the surface of the laminate, the stress wave attenuation along the fiber strength direction is small, and thus producing a large stress profile. When the compressive stress wave (longitudinal wave) is transmitted between the layers, it is reflected immediately instead of being transmitted immediately. This phenomenon occurs only when the energy has accumulated to a certain degree between the layers. The transmission of longitudinal waves is related to the thickness and the layer orientation. Along the symmetry across the thickness direction, the greater is the stress amplitude along the layer direction. Based on the detailed investigation on the impact on various laminated composites carried out in this paper, the propagation characteristics of stress waves, the damage and the destruction of laminates can be explained from the perspective of stress waves and a reasonable layering sequence of the composite can be designed against damage and failure from low velocity impact.

TE-TM Mode Conversion in Thin- Film Optical Wave-guides with Gyrotropic and Anisotropic Materials (박막형 광도파관에서 이방성 매질에 의한 TE-TM 모드 변환)

  • 정상구;원영희
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.6
    • /
    • pp.17-32
    • /
    • 1982
  • Wave propagation in gyrotropic or anisotropic medium is analyzed in terms of the eigenmodes of the medium, which are admixture of TE and TM waves. The field composition and the phase velocity of the modes are also determined. The results of the analysis are applied to thin film optical waveguide using such medium as substrate and/or film. Based on the characteristic equations for phase constants of the waveguide, the condition for TE-TM mode convection is derived, and wave propagation in the guide is represented in the form of Jones matrix, which allows a new interpretation in the conversion efficiency of the thin-film optical waveguides.

  • PDF

Impact Response Behaviors of Laminated Composite Plates Subjected to the Transversely Impact of a Steel Ball (강구에 의한 횡방향 충격을 받는 적층복합판의 충격 응답 거동)

  • 김문생;김남식;박승범;백인환
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.44-56
    • /
    • 1993
  • The purpose of this paper is to analyze the impact response behaviors of glass/epoxy laminated composite plates subjected to the transversely impact of a steel ball. For this purpose, dynamic finite element analysis based on the higher-order shear defomation plate theory is used to compute the contact forces, rebound velocity of a steel ball, and dynamic strain response histories. And low-velocity and high-velocity impact experiments were conducted to compare the results and compute the wave propagation velocities. The results obtained from impact experiments are in good agreement with those of dynamic finite element analysis. Also the wave propagation velocities obtained from high-velocity impact experiments and wave propagation theory agree well, and wave velocities were higher in the smaller radius of steel ball.

  • PDF

Modeling of Elastodynamic Problems in Finite Solid Media (유한 고체내 탄성동역학 문제의 모델링)

  • Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.2
    • /
    • pp.138-149
    • /
    • 2000
  • Various modeling techniques for ultrasonic wave propagation and scattering problems in finite solid media are presented. Elastodynamic boundary value problems in inhomogeneous multi-layered plate-like structures are set up for modal analysis of guided wave propagation and numerically solved to obtain dispersion curves which show propagation characteristics of guided waves. As a powerful modeling tool to overcome such numerical difficulties in wave scattering problems as the geometrical complexity and mode conversion, the Boundary Element Method(BEM) is introduced and is combined with the normal mode expansion technique to develop the hybrid BEM, an efficient technique for modeling multi mode conversion of guided wave scattering problems. Time dependent wave forms are obtained through the inverse Fourier transformation of the numerical solutions in the frequency domain. 3D BEM program development is underway to model more practical ultrasonic wave signals. Some encouraging numerical results have recently been obtained in comparison with the analytical solutions for wave propagation in a bar subjected to time harmonic longitudinal excitation. It is expected that the presented modeling techniques for elastic wave propagation and scattering can be applied to establish quantitative nondestructive evaluation techniques in various ways.

  • PDF

Flood Routing of Sequential Failure of Dams by Numerical Model (수치모형을 이용한 순차적 댐 붕괴 모의)

  • Park, Se Jin;Han, Kun Yeun;Choi, Hyun Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1797-1807
    • /
    • 2013
  • Dams always have the possibility of failure due to unexpected natural phenomena. In particular, dam failure can cause huge damage including damage for humans and properties when dam downstream regions are densely populated or have important national facilities. Although many studies have been conducted on the analysis of flood waves about single dam failure thus far, studies on the analysis of flood waves about the sequential failure of dams are lacking. Therefore, the purpose of this study was to calculate the peak discharge of sequential failure of dams through flood wave analysis of sequential failure of dams and this analysis techniques to predict flood wave propagation situation in downstream regions. To this end, failure flood wave analysis were conducted for Lawn Lake Dam which is a case of sequential failure of dams among actual failure cases using DAMBRK to test the suitability of the dam failure flood wave analysis model. Based on the results, flood wave analysis of sequential failure of dams were conducted for A dam in Korea assuming a virtual extreme flood to predict flood wave propagation situations and 2-dimensional flood wave analysis were conducted for major flooding points. Then, the 1, 2-dimensional flood wave analysis were compared and analyzed. The results showed goodness-of-fit values exceeding 90% and thus the accuracy of the 1-dimensional sequential failure of dams simulation could be identified. The results of this study are considered to be able to contribute to the provision of basic data for the establishment of disaster prevention measures for rivers related to sequential failure of dams.