• 제목/요약/키워드: wave periods

검색결과 282건 처리시간 0.021초

黃海에서의 波浪과 海底剪斷應力 (Surface Waves and Bottom Shear Stresses in the Yellow Sea)

  • 강시환;최제국
    • 한국해양학회지
    • /
    • 제19권2호
    • /
    • pp.118-124
    • /
    • 1984
  • 黃海의 海上風에 의한 重力波의 波高와 週期를 SMB法을 使用하여 計算 하였다. 그리고 黃海에서 樹勢한 北西風과 南西風이 40knots에 달할 때의 波浪活動 에 의한 海底流速과 海底剪斷應力을 線形波浪理論과 Kajiura(1968)의 暖流振動境界層分析에 의해 구하였다. 計算 缺課를 보면 韓半島의 西海沿近海域 에서 가장 큰 海波와 剪斷應力의 分布를 보이며 이로 인하여 沿近海底面이 持續的인 影響를 받고 있음이 나타났다.

  • PDF

Development of nationwide amplification map of response spectrum for Japan based on station correction factors

  • Maruyama, Yoshihisa;Sakemoto, Masaki
    • Earthquakes and Structures
    • /
    • 제13권1호
    • /
    • pp.17-27
    • /
    • 2017
  • In this study, the characteristics of site amplification at seismic observation stations in Japan were estimated using the attenuation relationship of each station's response spectrum. Ground motion records observed after 32 earthquakes were employed to construct the attenuation relationship. The station correction factor at each KiK-net station was compared to the transfer functions between the base rock and the surface. For each station, the plot of the station correction factor versus the period was similar in shape to the graphs of the transfer function (amplitude ratio versus period). Therefore, the station correction factors are effective for evaluating site amplifications considering the period of ground shaking. In addition, the station correction factors were evaluated with respect to the average shear wave velocities using a geographic information system (GIS) dataset. Lastly, the site amplifications for specific periods were estimated throughout Japan.

Experimental Results of Turbulent Thermal Mixing Phenomena Using Sodium Parallel Jets

  • Lee, Y.B.;Park, S.K.;J.S. Hwang;Kim, Y.K.;H.Y. Nam
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.199-204
    • /
    • 1996
  • In the present the mean temperature and the temperature fluctuation of non-isothermal parallel liquid sodium jets were measured and analyzed changing the temperature difference and mean velocity of the hot and cold sodium. The sampling frequency and sampling time were 420Hz and three seconds, respectively. The wave-form characteristics were discussed in regard to the peak-to-peak amplitudes and the periods provided by a wave analysis. And also the correlations of the temperature fluctuation in rms value and the peak amplitude are derived. The overall mean accuracy ratios of the correlations are 1.07 and 1.08 with a standard deviation of 0.17 and 0.15, respectively.

  • PDF

BEM과 VOF법을 결합한 수치모델의 개발과 그 타당성 검토 (Development and verification of a combined method of BEM and VOF)

  • 김상호;야마시로;요시다;하시모토;이중우
    • 한국항해항만학회지
    • /
    • 제29권10호
    • /
    • pp.853-858
    • /
    • 2005
  • 최근의 해안, 해양공학 분야에서는 구조물이 있는 영역의 파동을 계산하기 위해 Navier-Stokes 방정식을 기초로 한 많은 기법들이 개발되고 발전되어 왔다. 이들 중 파랑의 쇄파현상 등의 복잡한 파동현상을 재현하기 위한 수치해석 기법으로 Volume Of Fluid method (보프법)에 근거를 둔 수치해석 기법이 자주 사용되어지고 있다. 그러나 보프법은 일반적으로 방대한 계산시간과 기억용량이 요구되는 단점을 가지고 있어, 적어도 100주기 이상의 계산시간을 통한 해석이어야만 만족할 만한 결과가 나타나는 불규칙파랑의 경우, 보프법의 단독 적용으로는 현실적으로 어려워진다. 한편, 경계요소법(BEM)의 경우는 파랑을 신속하고, 정확하게 계산할 수 있으나, 비선형 현상을 재현할 수 없는 단점이 있다. 본 연구는 불규칙 파랑을 대상으로 하고, 구조물이 있는 경우의 파동현상도 계산이 가능한 수치 해석 기법의 개발을 목표로 하고 있다. 이를 위해, 두 기법의 장점을 살려 쇄파현상 등으로 인해 비선형 현상의 재현이 요구되는 영역에서는 보프법을 사용하여 계산하고, 비선형성을 무시할 수 있어 포텐셜이론이 적용 가능한 구간에서는 BEM을 사용하여 계산을 하도록 두 기법을 연결한 BEM-VOF model을 개발하였다. 개발된 수치모델의 검증은 5차 스톡스파의 파랑전파 및 불규칙파랑의 전파를 통해 수행하였다.

NUMERICAL MODEL FOR STORM SURGES

  • Yamashita, Takao;Bekku, Isao
    • 한국해안해양공학회:학술대회논문집
    • /
    • 한국해안해양공학회 1995년도 정기학술강연회 발표논문 초록집
    • /
    • pp.1-4
    • /
    • 1995
  • Storm surges are defined as abnormal changes of sea surface elevation whose periods range from several hours to days. The generation mechanism is separated into two. One is sea water suction due to atmospheric depression and the other is wind-driven sea water circulation. The former is a forced long-wave motion which is accompanied by a typhoon. (omitted)

  • PDF

Hydroelastic analysis of a truss pontoon Mobile Offshore Base

  • Somansundar, S.;Selvam, R. Panneer;Karmakar, D.
    • Ocean Systems Engineering
    • /
    • 제9권4호
    • /
    • pp.423-448
    • /
    • 2019
  • Very Large Floating Structures (VLFS) are one among the solution to pursue an environmentally friendly and sustainable technology in birthing land from the sea. VLFS are extra-large in size and mostly extra-long in span. VLFS may be classified into two broad categories, namely the pontoon type and semi-submersible type. The pontoon-type VLFS is a flat box structure floating on the sea surface and suitable in regions with lower sea state. The semi-submersible VLFS has a deck raised above the sea level and supported by columns which are connected to submerged pontoons and are subjected to less wave forces. These structures are very flexible compared to other kinds of offshore structures, and its elastic deformations are more important than their rigid body motions. This paper presents hydroelastic analysis carried out on an innovative VLFS called truss pontoon Mobile Offshore Base (MOB) platform concept proposed by Srinivasan and Sundaravadivelu (2013). The truss pontoon MOB is modelled and hydroelastic analysis is carried out using HYDRAN-XR* for regular 0° waves heading angle. Results are presented for variation of added mass and damping coefficients, diffraction and wave excitation forces, RAOs for translational, rotation and deformational modes and vertical displacement at salient sections with respect to wave periods.

한국 서해안에서의 설계파의 결정 (Determination of Design Waver along the West Coast of Korea)

  • 김태인;청형식
    • 물과 미래
    • /
    • 제20권2호
    • /
    • pp.127-138
    • /
    • 1987
  • 서해지역에서 해안구조물을 위한 설계파는 연안지상측후소의 과거 풍속자료로부터 해상풍의 설계풍속을 산정하고 지역별로 결정되는 취송역으로부터 파랑예측모델을 이용하여 결정하는 방법이 제안되었다. 서해에서 설계파를 지배하는 바람은 북서방향(W~N)의 동기계절풍과 남서(WSW~S) 방향의 하기계절풍 및 태풍이며 해상풍의 풍속은 U$\geq$20m/s의 탄풍에 대하여 연안의 지상풍속의 0.8~0.9배를 나타낸다. 서해의 해안지역은 그 위치여건에 따라 세 지역으로 구분할 수 있으며 각각의 지역에 대하여 설계파산정을 위한 취송역을 결정할 수 있다. 수정된 S.M.B. 법에 의하면 서해지역에서 100년빈도 설계파의 심해유의파고는 4.4m~8.3m, 주기는 8.9초~12.0초의 범위를 보인다.

  • PDF

파랑 및 정상흐름에 의한 해저관로 주변의 국부세굴 특성 비교 (Comparison of Local Scour around Pipeline Caused by Waves and Steady Currents)

  • 김경호;오현식
    • 한국해양공학회지
    • /
    • 제25권2호
    • /
    • pp.21-28
    • /
    • 2011
  • The primary purpose of the present study was to investigate the mechanism causing scour around a pipeline placed on the seabed in a shallow water zone. Such submarine pipelines are usually exposed to currents and waves. The present experiments made estimates for each different flow type. The scour width and depth in the equilibrium scour phase were analyzed by non-dimensional parameters. The experiment in this study considered various parameters: pipe diameters, wave periods, wave heights, and current velocities. Using the experimental results, the correlations of scour width, scour depth, and main non-dimensional parameters such as the Fr number and KC number were analyzed. In the case of steady currents, the scour hole was closely related to the bottom velocity, while the scour hole in waves showed a relatively low correlation to the bottom velocity because when exposed to waves the scour hole was restricted according to the movement distance of the water particles during a wave period. However, the scour width under a steady current was not limited because vortex shedding was well developed from having enough time and distance.

Parametric Study of Numerical Prediction of Slamming and Whipping and an Experimental Validation for a 10,000-TEU Containership

  • Kim, Jung-Hyun;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권2호
    • /
    • pp.115-133
    • /
    • 2015
  • This paper describes an approach for the numerical analysis of container ship slamming and whipping and various parameters that influence slamming and whipping. For validation purposes, the numerical analysis results were compared with experimental results obtained as part of the Wave-Induced Loads on Ships Joint Industry Project. Water entry problems for two-dimensional (2D) sections were first solved using a 2D generalized Wagner model (GWM) for various drop conditions and geometries. As the next step, the hydroelastic numerical analysis of a 10,000-TEU container ship subjected to slamming and whipping loads in waves was performed. The analysis method used is based on a fully coupled model consisting of a three-dimensional (3D) Rankine panel model, a 3D finite element model (FEM), and a 2D GWM, which are strongly coupled in the time domain. Parametric studies were carried out in both numerical and experimental tests with various forward speeds, wave heights, and wave periods. The trends observed and the validity of the numerical analysis results are discussed.

Seasonal Variations of Mesospheric Gravity Waves Observed with an Airglow All-sky Camera at Mt. Bohyun, Korea (36° N)

  • Kim, Yong-Ha;Lee, Chang-Sup;Chung, Jong-Kyun;Kim, Jeong-Han;Chun, Hye-Yeong
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권3호
    • /
    • pp.181-188
    • /
    • 2010
  • We have carried out all-sky imaging of OH Meinel, $O_2$ atmospheric and OI 557.7 nm airglow layers in the period from July of 2001 through September of 2005 at Mt. Bohyun, Korea ($36.2^{\circ}$ N, $128.9^{\circ}$ E, Alt = 1,124 m). We analyzed the images observed during a total of 153 clear moonless nights and found 97 events of band-type waves. The characteristics of the observed waves (wavelengths, periods, and phase speeds) are consistent with internal gravity waves. The wave occurrence shows an approximately semi-annual variation, with maxima near solstices and minima near equinoxes, which is consistent with other studies of airglow wave observations, but not with those of mesospheric radar/lidar observations. The observed waves tended to propagate westward during fall and winter, and eastward during spring and summer. Our ray tracing study of the observed waves shows that majority of the observed waves seemed to originate from mesospheric altitudes. The preferential directions and the apparent source altitudes can be explained if the observed waves are secondary waves generated from primary waves that have been selected by the filtering process and break up at the mesospheric altitudes.