• Title/Summary/Keyword: wave nature

Search Result 204, Processing Time 0.021 seconds

Numerical method of hyperbolic heat conduction equation with wave nature (파동특성을 갖는 쌍곡선형 열전도방정식에 관한 수치해법)

  • 조창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.670-679
    • /
    • 1998
  • The solution of hyperbolic equation with wave nature has sharp discontinuties in the medium at the wave front. Difficulties encounted in the numrtical solution of such problem in clude among oth-ers numerical oscillation and the representation of sharp discontinuities with good resolution at the wave front. In this work inviscid Burgers equation and modified heat conduction equation is intro-duced as hyperboic equation. These equations are caculated by numerical methods(explicit method MacCormack method Total Variation Diminishing(TVD) method) along various Courant numbers and numerical solutions are compared with the exact analytic solution. For inviscid Burgers equa-tion TVD method remains stable and produces high resolution at sharp wave front but for modified heat Conduction equation MacCormack method is recommmanded as numerical technique.

  • PDF

Comparative Analysis of the Parabolic and Hyperbolic Heat Conduction and the Damped Wave in a Finite Medium (유한한 평판에서 포물선형 및 쌍곡선형 열전도 방정식과 파동 방정식의 비교 해석)

  • Park, S.K.;Lee, Y.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.14-21
    • /
    • 1999
  • The wave nature of heat conduction has been developed in situations involving extreme thermal gradients, very short times, or temperatures near absolute zero. Under the excitation of a periodic surface heating in a finite medium, the hyperbolic and parabolic heat conduction equations and the damped wave equations in heat flux are presented for comparative analysis by using the Green's function with the integral transform technique. The Kummer transformation is also utilized to accelerate the rate of convergence of these solutions. On the other hand, the temperature distributions are obtained through integration of the energy conservation law with respect to time. For hyperbolic heat conduction, the heat flux distribution does not exist throughout all the region in a finite medium within the range of very short times(${\xi}<{\eta}_l$). It is shown that due to the thermal relaxation time, the hyperbolic heat conduction equation has thermal wave characteristics as the damped wave equation has wave nature.

  • PDF

Moreton Wave and EUV Wave Associated with the 2010 February 7 and 2010 August 18 Flares

  • Asai, Ayumi;Isobe, Hiroaki;Takasao, Shinsuke;Shibata, Kazunari
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.83.1-83.1
    • /
    • 2011
  • Solar flares are very spectacular, and are associated with various phenomena. Coronal shocks or disturbances are one of such flare-related phenomena. Although Moreton waves and X-ray waves are well explained with MHD first mode shocks propagating in the corona, there still remains a big problem on the nature of the waves, since they are very rare phenomena. On the other hand, EIT waves (or EUV waves) have been paid attention to as another phenomenon of coronal disturbances. However, the physical features (velocity, opening angle, and so on) are much different from those for Moreton waves and X-ray waves. We report detailed features of the coronal disturbances associated with the 2010 February 7 and the 2010 August 18 flares. For the former flare we analyzed the H-alpha images obtained by SMART at Hida Observatory, Kyoto University, Japan and by a flare telescope at National Astronomical Observatory of Japan, the X-rays images taken by Hinode/XRT, and the EUV images obtained by the both satellites of STEREO, and found the Moreton wave, X-ray wave, and EIT wave, simultaneously. In the latter flare, on the other hand, we observed a very fast EUV wave in EUV images taken by SDO/AIA. The propagating speed is comparable to the MHD first mode wave, while there is no obvious evidence of shocks for this flare. From these results, we discuss the nature of coronal disturbances.

  • PDF

A Study on the temperature Distributions at the Vicinity of a Very Fast Moving Heat Source (매우 빠르게 움직이는 열원 주위의 온도분포에 관한 연구)

  • Cho, Chang-Joo;Juhng, Woo-Nam;Lee , Yong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.162-169
    • /
    • 1999
  • Fourier heat conduction law becomes invalid for the situations involving extremely short time heating, very low temperatures and fast moving heat source(or crack), since the wave nature of heat propagation becomes dominant. For these conditions, the modified heat conduction equation with the finite propagation speed of heat in the medium could be applied to predict heat flux and temperature distributions. In this study, temperature distributions at the vicinity of a very fast moving heat source are investigated numerically. Thermal fields are characterized by thermal Mach numbers(M) defined as the ratio of moving heat source speed to heat propagation speed in the solid. In the transonic and supersonic ranges($M{\ge}1$), thermal shocks are shown, which separate the heat affected zone from the thermally undisturbed zone.

  • PDF

Wave Breaking and Breaking Wave-Induced High Frequency Pressure over Submerged Breakwater (잠제에 의한 쇄파 및 쇄파에 의해 발생하는 고주파수파동압)

  • Koichiro IWATA;Koji KAWASAKI;Hirokazu SUMI
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.14-23
    • /
    • 2002
  • Wave breaking and breaking wave-induced hydrodynamics are very important subjects in the field of coastal and ocean hydrodynamics and engineering. In the coastal zone, a submerged breakwater has been increasingly popular, since it is one of nature-matching structures with multi- functions such as (1) wave energy dissipation by wave breaking and friction, (2) oxygen supply to sea by wave breaking and breaking wave, (3) water purification by entrained air bubbles, (4) keeping. good seascape. and (5) good habitat for sea livings. Recently, the breaking wave-induced high frequency pressure over a submerged breakwater is said to have a function of gathering sea livings around the structure, which has encouraged the construction of the submerged breakwater in coastal zone. (omitted)

  • PDF

Dispersion of shear wave in a pre-stressed hetrogeneous orthotropic layer over a pre-stressed anisotropic porous half-space with self-weight

  • Kakar, Rajneesh;Kakar, Shikha
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.951-972
    • /
    • 2016
  • The purpose of this study is to illustrate the propagation of the shear waves (SH-waves) in a prestressed hetrogeneous orthotropic media overlying a pre-stressed anisotropic porous half-space with self weight. It is considered that the compressive initial stress, mass density and moduli of rigidity of the upper layer are space dependent. The proposed model is solved to obtain the different dispersion relations for the SH-wave in the elastic-porous medium of different properties. The effects of compressive and tensile stresses along with the heterogeneity, porosity, Biot's gravity parameter on the dispersion of SH-wave are shown numerically. The wave analysis further indicates that the technical parameters of upper and lower half-space affect the wave velocity significantly. The results may be useful to understand the nature of seismic wave propagation in geophysical applications and in the field of earthquake and material science engineering.

Performance assessment of pitch-type wave energy converter in irregular wave conditions on the basis of numerical investigation

  • Poguluri, Sunny Kumar;Kim, Dongeun;Bae, Yoon Hyeok
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.23-38
    • /
    • 2022
  • In this paper, a pitch-type wave energy converter (WEC-rotor) is investigated in irregular wave conditions for the real sea testing at the west coast of Jeju Island, South Korea. The present research builds on and extends our previous work on regular waves to irregular waves. The hydrodynamic characteristics of the WEC-rotor are assessed by establishing a quasi-two-dimensional numerical wave tank using computational fluid dynamics by solving the Reynolds-averaged Navier-Stokes equation. The numerical solution is validated with physical experiments, and the comparison shows good agreement. Furthermore, the hydrodynamic performance of the WEC-rotor is explored by investigating the effect of the power take-off (PTO) loading torque by one-way and two-way systems, the wave height, the wave period, operational and high sea wave conditions. Irrespective of the sea wave conditions, the absorbed power is quadratic in nature with the one-way and two-way PTO loading systems. The power absorption increases with the wave height, and the increment is rapid and mild in the two-way and one-way PTO loading torques, respectively. The pitch response amplitude operator increases as the wave period increases until the maximum value and then decreases. For a fixed PTO loading, the power and efficiency are higher in the two-way PTO loading system than in the one-way PTO loading system at different wave periods.

Simulations of nonlinear field line resonances

  • Kim, Kyung-Im;Lee, Dong-Hun;Kim, Jong-Soo
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.23.3-23.3
    • /
    • 2008
  • In this study, the nature of nonlinear field line resonances (FLR) is studied by adopting full MHD simulations. The MHD code used here is based on the total variation diminishing (TVD) scheme and we have performed numerical simulations of FLR with its three-dimensional code. If the source perturbation is strongly impulsive and thus the timescale of the initial variations is sufficiently smaller than the convection timescale, FLRs are easily confirmed in these simulations. When the disturbance is sufficiently small, it is shown that linear properties of MHD wave coupling are well reproduced. In order to examine nonlinear nature of FLR, wave spectra, Poynting flux and energy distribution are studied at resonances as the magnitude of initial disturbance gradually increases.

  • PDF

A Study on Suspended Sediment Concentration Due to Small Amplitude Wave Action (미소진폭파에 의한 저질의 부유농도에 관한 연구)

  • 여운광;안수한
    • Water for future
    • /
    • v.13 no.4
    • /
    • pp.33-40
    • /
    • 1980
  • It has been very difficult to analyse, clearly, the mechanism of the suspended sediment that changes, largely, the coastline, on-shore and off-shore. It is due to not only the complexity of the factors in nature but the measurement technique of suspended sediment characteristics both in nature and loboratory. The purpose of this paper are to obtain the time-rate of change in the concentration of suspended sediment, the vertical distribution of it and the effect of the fall velocity of its particle, and to make clear the mechanism of sand transportation in suspension, analysing the diffusion equation, by the computer, due to the small amplitude wave theory.

  • PDF

Quantitative Analysis of Skin Lotion Containing Rutin by Voltammetric Method Using Graphite Electrode (흑연전극을 사용한 전압전류법을 이용하여 스킨로션 중 루틴성분의 정량분석)

  • Kang, Myung-Kyu;Won, Bo-Ryoung;Lee, Dong-Kuk;Ly, Suw-Young;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.4
    • /
    • pp.325-331
    • /
    • 2009
  • We studied square-wave stripping voltammetry (SWV) to analyze quantitatively rutin contained in transparent skin-lotion using graphite electrode. The optimum analytical conditions for quantitative analysis of rutin were determined and the linear range was obtained of $1\;{\sim}\;8\;{\mu}g/mL$. The relative standard deviation of fifteen times repetition measurement for $0.1\;{\mu}g/mL$ of rutin was 0.080 and the detection limit was $0.01\;{\mu}g/mL$, respectively. We considered that this study could be used for quantitative analysis of active components contained in cosmetics.