• Title/Summary/Keyword: wave heights

Search Result 292, Processing Time 0.021 seconds

A Fundamental Study of Probability Functions and Relationship of Wave Heights. -On the Wave Heights of the East Coast of Korea- (파고의 확률분포 및 상관에 관한 기초적 연구 - 동해안의 파고를 중심으로 하여 -)

  • 윤해식;이순탁
    • Water for future
    • /
    • v.7 no.2
    • /
    • pp.99-106
    • /
    • 1974
  • The records of wave heights which were observed at Muk ho and Po hang of the East Coast of Korea were analized by several probility functions. The exponential 2 parameter distribution was found as the best fit probability function to the historical distribution of wave heights by the test of goodness of fit. But log-normal 2 parameter and log-extremal type A distributions were also fit to the historical distribution, especially in the Smirnov-Kolmogorov test. Therefore, it can't be always regarded that those two distributions are not fit to the wave heiht's distribution. In the test of goodness of fit, the Chi-Square test gave very sensitive results and Smirnov-Kolmogorov test, which is a distribution free and non-parametric test, gave more inclusive results. At the next stage, the inter-relationship between the mean and the one-third wave heights, the mean and the one-=tenth wave heights, the one-third and the one-tenth wave heights, the one-third and the highest wave heights were obtained and discussed.

  • PDF

Wave height from satellite altimetry and its comparison with ECMWF product

  • Kim, Seung-Bum;Cotton, P.David
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.337-340
    • /
    • 2002
  • Monitoring of wave height is important primarily to reduce storm risks at sea and along the coast. Wave heights in recent years have increased 50% for the last 40 years, thus requiring intensive monitoring. Satellite altimetry offers a powerful tool for regular and extensive monitoring of the wave height. We extracted significant wave height (SWH) using several altimeter missions from 1987-1995 over the Northwest Pacific and compared with ECMWF reanalysis (ERA) products. For large wave heights > 2.5 m, the ERA wave heights are smaller than the altimetric ones, while for small wave heights the ERA wave heights are larger. Comparison in SWH between altimetric derivations and ERA model products shows the discrepancy of 0.46-0.21$\times$SWH(m).

  • PDF

A Study of Statistical Properties of Waves in the Sea Area of Pohang (포항해역에서의 파랑의 통계적 특성에 대한 연구)

  • 안용호;김도영
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.216-221
    • /
    • 2001
  • In this paper, statistical properties of waves in the sea area of Pohang, Korea are examined absed on 1998-1999's wave data from directional wave buoy which is located Pohang(Janggigog). Wave data aquisition rate, monthly maximium, minimum and mean wave heights, frequency of wave direction are summarized. Wave height and period scatter diagrams and n-year return period wave heights are estimated. Wave periods of maximum wave heights are also estimated.

  • PDF

Analysis of Failure Probability of Armor Units and Uncertainties of Design Wave Heights due to Uncertainties of Parameters in Extreme Wave Height Distributions (극치파고분포의 모수 불확실성에 따른 설계파고의 불확실성 및 피복재의 파괴확률 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.120-125
    • /
    • 2010
  • A Monte-Carlo simulation method is proposed which can take uncertainties of scale and location parameters of Gumbel distribution into account straightforwardly in evaluating significant design wave heights with respect to return periods. The uncertainties of design wave heights may directly depend on the amounts of uncertainties of scale parameter and those distributions may be followed by Gumbel distribution. In case of that the expected values of maximum significant wave height during lifetime of structures are considered to be the design wave heights, more uncertainties are happened than in those evaluated according to return periods with encounter probability concepts. In addition, reliability analyses on the armor units are carried out to investigate into the effects of the uncertainties of design wave heights on the probability of failure. The failure probabilities of armor units to 5% damage level for 50 return periods are evaluated and compared according to the methods of taking uncertainties of design wave heights into account. It is found that the probabilities of failure may be distributed into wide ranges of bounds when the uncertainties of design wave heights are assumed to be same as those of annual maximum significant wave heights.

Probability Distribution of Nonlinear Random Wave Heights Using Maximum Entropy Method (최대 엔트로피 방법을 이용한 비선형 불규칙 파고의 확률분포함수)

  • 안경모
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.4
    • /
    • pp.204-210
    • /
    • 1998
  • This paper presents the development of the probability density function applicable for wave heights (peak-to-trough excursions) in finite water depth including shallow water depth. The probability distribution applicable to wave heights of a non-Gaussian random process is derived based on the concept of the maximum entropy method. When wave heights are limited by breaking wave heights (or water depth) and only first and second moments of wave heights are given, the probability density function developed is closed form and expressed in terms of wave parameters such as $H_m$(mean wave height), $H_{rms}$(root-mean-square wave height), $H_b$(breaking wave height). When higher than third moment of wave heights are given, it is necessary to solve the system of nonlinear integral equations numerically using Newton-Raphson method to obtain the parameters of probability density function which is maximizing the entropy function. The probability density function thusly derived agrees very well with the histogram of wave heights in finite water depth obtained during storm. The probability density function of wave heights developed using maximum entropy method appears to be useful in estimating extreme values and statistical properties of wave heights for the design of coastal structures.

  • PDF

Wave Height from Satellite Altimetry and Its Comparison with a Model Product

  • Kim, Seung-Bum;Kang, Sok-Kuh
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2003
  • We extracted significant wave height (SWH) using several altimeter missions from 1987-1995 over the Northwest Pacific ocean and compared with ECMWF (European Center for Medium- Range Forecast) reanalysis (ERA) products. For large wave heights the ERA wave heights are smaller than the altimetric ones, while for small wave heights the ERA wave heights are larger Comparison in SWH between altimetric derivations and ERA model products shows the discrepancy of 0.46-0.21$\times$SWH (m). Methods for propagating this differences into ERA wind error are presented.

Wave Properties in the Sea Area of Mara-do in ′98 and ′99 (′98-′99 마라도해역에서의 파랑의 특성)

  • 안용호;정진영;류황진;김도영
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.108-116
    • /
    • 2001
  • In this paper, statistical properties of waves in the sea area of Mara-do, Korea are examined based on 1998-1999's wave data from a directional wave buoy which is located in Mara-do. Wave data aquisition rate, monthly maximium, minimum and mean wave heights, frequency of wave direction are summarized. Wave height and period scatter diagrams and n-year return period wave heights are estimated. Wave periods of maximum wave heights are also estimated.

  • PDF

On statistical Properties of the Extreme Waves (극한파의 통계적 특성에 대한 연구)

  • Ryu, Hwang-Jin;Kim, Do-Yong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.309-316
    • /
    • 2003
  • In this paper, The statistical properties of ocean waves in the sea area of Hong-do, Korea are examined based on 1998-2002's wave data from a directional wave buoy. Wave data aquisition rate, mean wave heights, frequency of wave direction are summarized. Wave height and period scatter diagrams and n-years return period wave heights are estimated. Wave periods of maximum wave heights are also estimated. Large amplitude wave characteristics during the typhoon Prapiroon in 2000, Rusa in 2002 are also examined.

  • PDF

Design and Verification of a Wave Gauge Using Digital Images (디지털 영상을 이용한 파고계 개발 및 검증)

  • Kim Taerim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.3
    • /
    • pp.171-177
    • /
    • 2004
  • A new wave gauge using digital image of waves is developed and the performances are tested by wave tank experiments. This wave gauge uses frame frequency of 1/15 sec, conversion of analog images to digital images, and large capacity of hard disk. This wave gauge measures wave heights by detecting the buoy movement automatically from the image, where the buoy moves with the same phase of water surface. The comparison of automatic measurements of wave heights to the true data is reasonable. The wave gauge can be improved to measure wave heights on shallow waters near shorelines.

A Study on Calibration of Underestimated Wave Heights Measured by Wave and Tide Gauge (WTG) (저평가된 수압식 파고계(WTG) 관측 파고값 보정방안 연구)

  • Jeong, Weon Mu;Chang, Yeon S.;Oh, Sang-Ho;Baek, Won Dae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.296-306
    • /
    • 2020
  • It has been reported that the wave heights measured by Wave and Tide gauges (WTG) have been underestimated, and thus it is important to improve its measuring accuracy for enhancing estimation of harbor tranquility. In this study, the significant wave heights from WTG were calibrated using measured data from AWAC and Waverider buoys moored at the same four locations with the WTG. It was observed that the product of significant wave height and peak wave period, HT, was not underestimated but linearly proportional between the measurements by two instruments. This linearity was applied to develop 3rd order polynomial functions that best represented the relationship between HT and significant wave heights measured by WTG. These functions were then applied to calibrate the WTG significant wave heights that were lower than 0.7 m, the critical value established for the low waves in this study. The results showed that the linearity between the AWAC (or Waverider buoy) and calibrated wave heights were improved, and the magnitude of underestimated WTG wave heights were increased to be more realistic. The results of this study are expected to be effectively applied for other data sets obtained by WTG only, to increase the observation accuracy of WTG and to improve the estimation of harbor tranquility.