• Title/Summary/Keyword: wave height energy

Search Result 252, Processing Time 0.032 seconds

Analysis on the Reduction Effects of the Gravity Waves and Infra-Gravity Waves of Detached Submerged Breakwater by Field Monitoring (현장관측을 통한 이안소파잠제의 중력파 및 중력외파 저감효과 검토)

  • Jeong, Weon-Mu;Back, Jong-Dai;Choi, Hyukjin;Kim, Sang-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.51-60
    • /
    • 2018
  • This study was conducted to observe the effects of gravity and infra-gravity wave of detached submerged breakwater in the coast of Yeongnang-dong, Sokcho, as analyzing continuous wave data by performing field observations on the front area (W0) and rear area (W1, W2). Wave transmission coefficient ($K_t$) of submerged breakwater was analyzed in two parts, short-period wave (gravity wave) and infra-gravity wave. The wave energy reduction effect was analyzed and compared with the value of the design. In case of above wave height 2.0 m at the front area (W0) of the submerged breakwater, the short-period wave height at point W1 is reduced by about 65% and the short-period wave height at point W2 is reduced by about 59%. The depth of crest of submerged breakwater conducted in a sea area differs from the design, and the wave energy reduction effect is analyzed to be smaller than the design plan. The infra-gravity waves were amplified to 2.11 and 1.71 at the W1 and W2 points, respectively, and the wave height at W2 point was smaller than that at W1 point.

Performance evaluation of Wave observation system using GPS (GPS를 이용한 파고 관측 시스템의 성능 평가)

  • Huh, Yong;Hwang, Chang-Su;Kim, Dae Hyun;Heo, Sin;Kim, Joo-Youn;Lee, Kee-Wook;Hong, Sung-Doo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.357-362
    • /
    • 2012
  • Despite the Wave observations data is very important information to human life at sea, the technology development and research for wave equipments are lacking. In this study, the wave observation system using GPS was evaluated the quality of wave observation data by comparing of long-term observations. The result of the comparison of the acceleration sensor (Hippy-40) and GPS sensor (Mose-1000), the correlation coefficient of the significant wave height and significant wave periods is 0.997 and 0.990 respectively. Also in case of BIAS, the significant wave height is 0.014 m, the significant wave period is -0.212 sec. It makes no significant differences whether the acceleration sensor (Hippy-40) and GPS sensor (Mose-1000). These results of the wave observation data using GPS quality will be evaluated as very good.

A Study on the Concentration of Wave Energy by Construction of a Submerged Coastal Structure (해저구조물 설치에 따른 파랑에너지 집적에 관한 연구)

  • Gug, S.G.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.6 no.1
    • /
    • pp.69-91
    • /
    • 1992
  • A new type of horizontal submerged break water or fixed structure to control waves near coastal area is introduced to focus wave energy before or behind it. Intentionally, the water depth near the structure is changed gradually to get a refraction and diffraction effect. The concentration of wave energy due to the structure was analyzed for the selected design of structure. The shape of the submerged structure in consideration is a circular combined with elliptical curve not to cause reflection of waves at the extreme edge of the structure but cause wave scattering. The direction of the structure against the incident wave is changed easily in the model Applying a regular wave train the following were examined. 1) whether a crescent plain submerged structure designed by the wave refraction theory can concentrate wave energy at a focal zone behind and before it without wave breaking phenomenon. 2) Location of maximum wave amplification factor in terms of the incident wave direction, wave period, etc. In any event the study would contribute to control waves near coastal area and to protect a beach from erosion without interruption of ocean view it is an useful study for the concentration of wave energy efficiently with the increase of wave height.

  • PDF

A Study on the Prediction of Wave Deformation Model (파랑변형 모형의 예측에 관한 연구)

  • Ok, Chi-Yul;Min, Ill-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.41-52
    • /
    • 1995
  • the necessity of development of the Nearshore zone greatly emphasis in recent years. In the wave deformation model, we can get the wave height and wave direction using the hyperbolic mild slope equation considered the reflection wave. Radiation Stress the driving force of flow was calculated by the Watanabe and Maruyama who proposed on the partial standing wave. In the surf zone, applying the Izumiya and Horikawa's turbulent model considered the bottom friction and energy dissipation, we compared and examined with the Numerical model and Hydraulic test result of Watanabe and Maruyama. This model results obtained for Jin-ha Beach agreed well with the Numerical results. This model is expected so helpful to solve the prediction of the wave deformation problems in the development of the Nearshore zone in the future.

  • PDF

Analysis of Long-Term Wave Distribution at Jeju Sea Based on SWAN Model Simulation (SWAN모델을 이용한 제주해역 장기 파랑분포 특성 연구)

  • Ryu Hwangjin;Hong Keyyong;Shin Seung-Ho;Song Museok;Kim Do Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.3
    • /
    • pp.137-145
    • /
    • 2004
  • Long-term wave distribution at Jeju sea is investigated by a numerical simulation based on the thirdgeneration wave model SWAN (Simulating WAves Nearshore). The Jeju sea which retains relatively high wave energy density among Korean coastal regions is considered to be a suitable site for wave power generation and the efficiency of wave power generation is closely related to local wave characteristics. The monthly mean of a large-scale long-term wave data from 1979 to 2002, which is provided by Korea Ocean Research & Development Institute. is used as the boundary condition of SWAN model simulation with 1km grid. An analysis of wave distribution concentrates on the seasonal variation and spatial distribution of significant wave heights, mean wave directions and mean wave periods. Significant wave heights are higher in winter and summer and the west sea of Jeju appears relatively higher than east's. The highest significant wave height occurs at the northeast sea in winter and the second highest significant wave height appears at the southeast sea in summer, while the significant wave heights in spring and autumn are relatively low but homogeneous. The distribution of wave directions reveals that except the rear region influenced by wave refraction, the northwest wave direction is dominant in summer and the southeast in winter. Wave periods are longer in summer and winter and the west sea of Jeju appears relatively longer than east's. The longest wave period occurs at the west sea in winter, and in summer it appears relatively homogeneous with a little longer period at the south sea.

  • PDF

On the Calculation of Irregular Wave Reflection from Perforated-Wall Caisson Breakwaters Using a Regular Wave Model (규칙파 모델을 이용한 유공케이슨 방파제로부터의 불규칙파 반사율 산정에 대하여)

  • 서경덕;손상영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.11-20
    • /
    • 2003
  • In this paper we examine several methods tor calculating the reflection of irregular waves from a perforated-wall caisson breakwater using a regular wave model. The first method is to approximate the irregular waves as a regular wave whose height and period are the same as the root-mean-squared wave height and significant wave period, respectively, of the irregular waves. The second is to use the regular wave model, repeatedly, for each frequency component of the irregular wave spectrum. The wave period is determined according to the frequency of the component wave, and the root-mean-squared wave height is used for all the frequencies. The third method is the same as the second one except that the wave height corresponding to the energy of each component wave is used. Comparison with experimental data from previous authors shows the second method is the most adequate, giving reasonable agreement in both frequency-averaged reflection coefficients and reflected wave spectra.

The Effect of Sampling Rate on Statistical Properties of Extreme Wave (파랑자료의 sampling rate가 극한파의 통계에 미치는 영향)

  • Kim, Do Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 2013
  • In this paper time series wave data are simulated using wave spectrum with random phases of the wave signal. The simulated wave signals are used to study the effect of the sampling rate on the ocean wave characteristics. Effect of sampling rate on wave data which include extreme wave such as freak waves are examined and various wave characteristics including abnormality index (AI), kurtosis of wave profile and maximum wave height are examined. Various wave heights are decreased as the sampling rate decreases. The zero-th moment of the wave spectrum does not affect much on the sampling rate but the second moment are greately affected on the sampling rate. The error due to the sampling rate is decreases as the wave period increases. The error in significant wave height based on the wave spectrum $H_s$ is smaller than that on the time domain method $H_{1/3}$. AI index and kurtosis of wave profile do not deviate much from the exact date as long as the sampling rate is greater than 1 Hz. Ocean wave measurement with the sampling frequency higher than 1 Hz will result the error less than 5% in estimating the height of extreme waves.

Investigation on the Design Wave Forces for Ear-do Ocean Research Station II: Fluid Force in the Breaking Wave Field (이어도 종합해양과학기지에 대한 설계파력의 검토 II: 쇄파역에서의 유체력)

  • 전인식;심재설;최성진
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.4
    • /
    • pp.168-180
    • /
    • 2000
  • In the Part I, the three dimensional model testing with NNW deep water wave direction gave the results such that the occurrence of breaking waves over the peak of Ear-Do caused very small wave height at the structure position. But the measured wave forces were rather greater than the calculated forces based on deep water wave height. Furthermore, It was also perceived that the time series of the forces looked like corresponding to the case that waves were superimposed by an unidirectional current. In the present Part II, the current is presumed to be a flow secondly induced by breaking waves, and an extensive study to clarify the current in a quantitative sense is performed through numerical analysis and hydraulic experiment. The results showed that a strong circulation can surely occur in the vicinity of the structure due to radiation stress differentials given by the breaking waves. It was also recognized that the velocity of the induced current varied with the magnitude of energy dissipation rate introduced in the numerical analysis. The numerical analysis was tuned adjusting the dissipation rate so that the calculated wave field could closely match with the experimental results of Part I. The fluid force (in prototype) for the optimal match showed approximately 2.2% increased over the calculated value based on the deep water wave height (24.6m) whereas the force corresponding to the average of the experimental values showed the increase of about 13.0%.

  • PDF

On wave propagation of football ball in the free kick and the factors affecting it

  • Xumao Cheng;Ying Wu
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.669-672
    • /
    • 2023
  • In this research, the researcher has examined the factors affecting the movement of the soccer ball and will show that the effects such as air resistance, altitude above sea level, wind, air pressure, air temperature, air humidity, rotation of the earth, changes in the earth's gravitational acceleration in different areas. It, the geographical length and latitude of the launch point, the change of gravitational acceleration with height, the change of pressure with height, the change of temperature with height and also the initial spin (Magnus effect) affect the movement of projectiles (especially soccer ball). We modelled th ball based on shell element and derive the motion equations by energy method. Finally, using numerical solution, the wave of the ball is studied. The influences of various parameters are investigated on wave propagation of the ball. Therefore, in short, it can be said that the main factors that play a major role in the lateral deviation of the hit ball are the initial spin of the ball and the wind.

Numerical Simulation on Reduced Runup Height of Solitary Wave by Fixed Submerged and Floating Rectangular Obstacles (고정된 사각형 수중 및 부유식 구조물에 의한 고립파의 처오름높이 저감 수치모의)

  • Choong Hun, Shin;Hyung Suk, Kim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.211-221
    • /
    • 2022
  • The wave runup height is one of the most important parameters for affecting the design of coastal structures such as dikes, revetments, and breakwaters. In this study, SWASH (Zijlema et al., 2011), a non-hydrostatic pressure numerical model, was used to analyze the effect of reducing The wave runup height of solitary waves by submerged and floating rectangular obstacles. It was confirmed that the SWASH model reproduces the propagation, breaking, and runup of solitary waves quite well. In addition, it was confirmed that the wave deformation of the solitary wave by submerged and floating rectangular obstacles was well reproduced. Finally, we conducted an examination of the effect of reducing the runup height of submerged and floating rectangular obstacles. Reduced runup heights are calculated and the characteristics of runup height reduction according to the dimensions of the obstacle were analyzed. The energy attenuation effect of the floating obstacle is greater than the submerged obstacle, and it is shown to be more effective in reducing the runup height.