• Title/Summary/Keyword: wave function

Search Result 1,674, Processing Time 0.028 seconds

Investigation of the Design Wave Forces for Ear-Do Ocean Research Station I: Three Dimensional Hydraulic Model Tests (이어도 종합해양과학기지에 대한 설계파력의 검토 I: 삼차원 수리모형실험)

  • 전인식;심재설;최성진
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.4
    • /
    • pp.157-167
    • /
    • 2000
  • Korea Ocean Research and Development Institute performed the basic design of the Ear-Do Ocean Research Station in 1998. The design wave was taken to be the deep water wave which was obtained through wave hindcasting procedure. Wave forces acting on the structure were calculated by Morison formula utilizing the stream function theory of 5th. order. In the present study, a three dimensional hydraulic model testing was undertaken to investigate the validity of the basic design, measuring wave propagation over the Ear-Do, horizontal wave forces and air gaps. The measured forces were all compared by the corresponding values calculated by SACS program based on th design on the design wave. The results showed that in the three deep water wave directions (SSW, S, SE) the measured wave farces appeared less than the SACS calculated. But in the NNW wave direction, the measured forces generally exceeded the calculated values and showed a peculiar pattern very similar to the case that waves are superimposed by an unidirectional current. It was also found that the measured air gap underneath the structure appeared less than the values taken in the basic design for all wave directions.

  • PDF

Analysis of Wave Transmission Characteristics on the TTP Submerged Breakwater Using a Parabolic-Type Linear Wave Deformation Model

  • Jeong, Jin-Hwan;Kim, Jin-Hoon;Lee, Jung-Lyul
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.82-90
    • /
    • 2021
  • Owing to the advantages of assuring the best views and seawater exchange, submerged breakwaters have been widely installed along the eastern coast of Korea in recent years. It significantly contributes to promoting the advancement of shorelines by partially inhibiting incident wave energy. Observations were carried out by a pressure-type wave gauge in the Bongpo Beach to evaluate the coefficients of wave transmission via a submerged breakwater, and the results obtained were compared with those of existing conventional equations on the transmission coefficient derived from hydraulic experiments. After reviewing the existing equations, we proposed a transmission coefficient equation in terms of an error function. Although it exhibited robust relationships with the crest height and breaking coefficient, deviations from the observed data were evident and considered to be triggered by the difference in the incident wave climate. Therefore, in this study, we conducted a numerical experiment to verify the influence of wave period on the coefficients of wave transmission, in which we adopted a parabolic-type mild-slope equation model. Consequently, the deviation from calculated results appears to practically cover all deviation range in the observed data. The wave period and direction of the incident wave increased, the transmission coefficient decreased, and the wave direction was determined to demonstrate a relatively significant influence on the transmission coefficient. It was inferred that this numerical study is expected to be used practically in evaluating the design achievement of the submerged breakwater, which is adopted as a countermeasure to coastal beach erosion.

Waveform characterization and energy dissipation of stress wave in sandstone based on modified SHPB tests

  • Cheng, Yun;Song, Zhanping;Jin, Jiefang;Wang, Tong;Yang, Tengtian
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.187-196
    • /
    • 2020
  • The changeable stress environment directly affect the propagation law of a stress wave. Stress wave propagation tests in sandstone with different axial stresses were carried using a modified split Hopkinson Pressure bar (SHPB) assuming the sandstone has a uniform pore distribution. Then the waveform and stress wave energy dissipation were analyzed. The results show that the stress wave exhibits the double peak phenomenon. With increasing axial stress, the intensity difference decreases exponentially and experiences first a dramatic decrease and then gentle development. The demarcation stress is σ/σc=30%, indicating that the closer to the incident end, the faster the intensity difference attenuates. Under the same axial stress, the intensity difference decreases linearly with propagation distance and its attenuation intensity factor displays a quadratic function with axial stress. With increasing propagation distance, the time difference decays linearly and its delay coefficient reflects the damage degree. The stress wave energy attenuates exponentially with propagation distance, and the relations between attenuation rate, attenuation coefficient and axial stress can be represented by the quadratic function.

A Uniform Asymptotic Solution for Transmitted Waves through a Plane Dielectric Interface from a Denser to a Rarer Mediums by Using Parabolic Cylinder Functions

  • Quang, Dinh Trong;Goto, Keiji;Kawano, Toru;Ishihara, Toyohiko
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.45-54
    • /
    • 2012
  • When the cylindrical wave is incident on a plane dielectric interface from a denser medium to a rarer one, the asymptotic solution for the transmitted wave in the near region is different from the one in the far region. In this paper, we have derived a novel uniform asymptotic solution represented by using the parabolic cylinder function for the transmitted and scattered waves observed in the rarer medium when the cylindrical wave is incident on the plane dielectric interface from the denser medium. The validity of the uniform asymptotic solution has been confirmed by comparing with the reference solution calculated numerically. It has been clarified that the transition wave plays an important role to connect smoothly the asymptotic solution in the near region to the one in the far region through the transition region. We have shown the very interesting phenomenon that the lateral wave type transmitted wave is observed in the far and shallow region.

Study of Nearshore OWC Wave Power Absorbing Breakwater (연안고정식 파력발전 겸 OWC 방파제 성능연구)

  • Hong, Do-Chun;Shin, Seung-Ho;Hong, Key-Yong;Hong, Seok-Won
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.465-468
    • /
    • 2006
  • The wave power absorbing performance of a bottom-mounted oscillating water column (OWC) chamber structure is studied. The potential problem inside the chamber is solved by making use of the Green integral equation associated with the Rankine Green function while the outer problem with the Kelvin Green function taking account of fluctuating air pressure in the air chamber. The absorbed wave power, wave elevation inside the chamber, reflection coefficient and wave loads are calculated for various values of a parameter related to the fluctuating air pressure. The present methods can also be used for the design of a OWC breakwater which can absorb and reflect the incoming wave energy at the same time.

  • PDF

Steady Boundary Layer Flow under the Influence of Progressive Finite Amplitude Wave (진행성 유한진폭파로 인한 정상성 경계층류)

  • OhImSang
    • 한국해양학회지
    • /
    • v.21 no.4
    • /
    • pp.259-264
    • /
    • 1986
  • The problem of the formation of steady stream of flat bottom boundary is revisited by applying a progressive finite amplitude wave as an external flow. A solution for the boundary layer is found by expanding the boundary equation into double Fourier series. A vertical profile of the stream is obtained as a function of the ratio, h/L, where h and L are the water depth and the wave length. For the best applicable range of the external wave, it is shown that the boundary stream is independent of the fluid viscosity, but a function of the wave parameters and the water depth. The stream velocity of the steady boundary layer flow is proportional to the wave phase velocity and the square of the ratio, H/h, where His the wave height. The magnitude of the velocity is insignificant when h/L is greater than 1/5.

  • PDF

Numerical Simulation of Nonlinear Free-Surface Flow around Seawall with Slope (경사면을 갖는 월파형 구조물 주위의 비서형성 자유표면류의 수치 시뮬레이션)

  • PARK JONG-CHUN;PARK DONG-IN;LEE SANG-BEOM;HONG GI-YONG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.90-95
    • /
    • 2004
  • During the past 50 years methods for predicting wave overtopping of coastal structures have coastal structures have continuously been developed Wave overtopping is one of the most important processes for the design of seawalls. The term 'wave overtopping' is used here to refer to the processes where waves hit a sloping structure run up the slope and, if the crest level of the slope is lower than the highest run up level, overtop the structure. Wave overtopping is dependent on the processes associated with breaking wave. The Numerical model is based on Navier-Stokes equation and Marker-Density Function of method for nonlinear free-surface flow by Miyata & Park(1995). The influence of how the slopes of seawalls, wave type and crest freeboard affect overtopping discharges has been investigated. The research of study using the new development nonlinear free-surface flow numerical model SOLA-VOF are presented.

  • PDF

A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates

  • Karami, Behrouz;Janghorban, Maziar;Shahsavari, Davood;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.99-110
    • /
    • 2018
  • In this paper, a new size-dependent quasi-3D plate theory is presented for wave dispersion analysis of functionally graded nanoplates while resting on an elastic foundation and under the hygrothermaal environment. This quasi-3D plate theory considers both thickness stretching influences and shear deformation with the variations of displacements in the thickness direction as a parabolic function. Moreover, the stress-free boundary conditions on both sides of the plate are satisfied without using a shear correction factor. This theory includes five independent unknowns with results in only five governing equations. Size effects are obtained via a higher-order nonlocal strain gradient theory of elasticity. A variational approach is adopted to owning the governing equations employing Hamilton's principle. Solving analytically via Fourier series, these equations gives wave frequencies and phase velocities as a function of wave numbers. The validity of the present results is examined by comparing them with those of the known data in the literature. Parametric studies are conducted for material composition, size dependency, two parametric elastic foundation, temperature and moisture differences, and wave number. Some conclusions are drawn from the parametric studies with respect to the wave characteristics.

Development and Goals of smart EM wave absorber with heat radiating function

  • Choi, Dong Soo;Kim, Dong Il;Kim, Do Yeol;Choi, Dong Han
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.10a
    • /
    • pp.125-127
    • /
    • 2012
  • With the progress of electronics and radio communication technology, human enjoys greater freedom in communication. However, EMW (Electro-Magnetic wave) environments have became complicate and more difficult to control. Thus, international organizations, such as the American National Standard Institution (ANSI), Federal Communications Commission (FCC), the Comite Internationale Special des Perturbations Radio electrique (CISPR), etc, have provided standard for controlling the EM wave environments and for the countermeasure of the electromagnetic compatibility (EMC). In this paper, the status of EMW absorber and the goal of smart EMW absorber ifor the future were described. Furthermore, design method of the smart EM wave Absorber with heat radiating function was suggested. The designed smart EM wave Absorber has the absoption ability of more than 5 dB from 2 GHz to 2.45 GHz band, one optimum aperture (hole) size of which was 6 mm, 9 mm in adjacent hole space, and 6.5 mm in thickness, respectivly. Thus, it is repected that these results can be applied to various EMC devices in electronic, communication, and controlling systems.

  • PDF

Adaptive Re-reflecting Wave Control in Plunger Type Wave Maker System: Theory

  • Park, Jae-Woong;Lee, Jin-Ho;Park, Gun-Il;Kim, Ki-Jung
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.4
    • /
    • pp.13-18
    • /
    • 2002
  • Active control has been partly applied to suppress the re-reflecting waves in wave basin with plunger-type wave maker to obtain desirable waves. This limitation comes from the non-confirmable theoretical background to the control algorithm. This paper proposes control logic to overcome this drawback, based on the impulse response function for propagating waves between control input and the wave height. The performances have been verified as reasonable in practical application by comparing with the propagating wave components in numerical wave basin, using wave decomposition method. Moreover, the control logic can also give useful wave-absorbing performance after cessation of wave generation.