• Title/Summary/Keyword: wave function

Search Result 1,674, Processing Time 0.028 seconds

Parameter Determination of Rainfall Runoff Model by Storage Function Model (저유함수법에 의한 강우-유출모형의 변수추정)

  • 남궁달
    • Water for future
    • /
    • v.18 no.2
    • /
    • pp.175-185
    • /
    • 1985
  • This paper discusses the posibility of synthesizing flood hudrographs by the stroage function model. Eight small watersheds from Han, Gum, Nakdong, Youngsan river system were selected for this purpose. The optimum constants are computed from the chi square criterion by the SDFP methods Based on these constants, equations for the storage constant and Lag time are derived from the kinematic wave theory and storage function theory. These relations are examined by using optimum constants of the storage function model and assumptive constant of the kinematic wave model. Main results are sumarized as follows. 1. Constants of the storage function model are closely related to those of the kinematic wave model. The formula obtained theoretically is difficult to use practically because of the unclaified definition of factors. 2. In order to estimate constants of the storage function model for the practical purpose, new equations are also proposed for mountaneous area. 3. The verification of proposed equation is made for several recorded floods for mountaeous areas.

  • PDF

Envelope-Function Equation and Motion of Wave Packet in a Semiconductor Superlattice Structure

  • Kim, Byoung-Whi;Jun, Young-Il;Jung, Hee-Bum
    • ETRI Journal
    • /
    • v.21 no.1
    • /
    • pp.1-27
    • /
    • 1999
  • We present a new description of envelope-function equation of the superlattice (SL). The SL wave function and corresponding effective-mass equation are formulated in terms of a linear combination of Bloch states of the constituent material with smaller band gap. In this envelope-function formalism, we review the fundamental concept on the motion of a wave packet in the SL structure subjected to steady and uniform electric fields F. The review confirms that the average of SL crystal momentums K = ($k_x,k_y,q$), where ($K_x,k_y$) are bulk inplane wave vectors and q SL wave vector, included in a wave packet satisfies the equation of motion = $_0+Ft/h$; and that the velocity and acceleration theorems provide the same type of group velocity and definition of the effective mass tensor, respectively, as in the Bulk. Finally, Schlosser and Marcus's method for the band theory of metals has been by Altarelli to include the interface-matching condition in the variational calculation for the SL structure in the multi-band envelope-function approximation. We re-examine this procedure more thoroughly and present variational equations in both general and reduced forms for SLs, which agrees in form with the proposed envelope-function formalism. As an illustration of the application of the present work and also for a brief investigation of effects of band-parameter difference on the subband energy structure, we calculate by the proposed variational method energies of non-strained $GaAs/Al_{0.32}Ga_{0.68}As$ and strained $In_{0.63}Ga_{0.37}As/In_{0.73}Ga_{0.27}As_{0.58}P_{0.42}SLs$ with well/barrier widths of $60{\AA}/500{\AA}$ and 30${\AA}/30{\AA}$, respectively.

  • PDF

A Numerical Study on Pontoon Type Floating Breakwaters in Oblique Waves

  • Kim, Do-Young
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2000
  • A numerical investigation was made to examine characteristics of rectangular pontoon type floating breakwaters in oblique waves. Sway and heave wave exciting forces, roll moment acting on the floating breakwater and three motion reponses decrease as the incident wave angle increases for the most of the wave ranges. There exists a minimum wave transmission coefficient which is a function of wave frequency. In short wave range wave transmission coefficient increases as the incident wave angle increases. In long wave range, however, wave transmission coefficient decreases as the wave incident angle increases.

  • PDF

Computational Study on the Characteristics of Nonlinear Wave Caused by Breaking Waves of Two-Dimensional Regular Periodic Wave (2차원 진행규칙파열에서의 쇄파현상에 따른 비선형성 파의 특성에 관한 수치적 연구)

  • 박종천;관전수명
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.50-61
    • /
    • 1996
  • The breaking phenomenon of regular periodic waves generated by a numerical wave maker is simulated by finite-difference method which can cope with strong interface motions. The air and water flows are simultaneously solved in the time-marching solution procedure for the Navier-Stokes equation. A density-function technique is devised for the implemenation of the interface conditions. The accuracy is examined and applied to the simulation of two-dimensional breaking phenomena of periodic gravity waves.

  • PDF

A Study on the Wave Drift Damping of Ship in Waves (파랑중 선박의 표류감쇠에 관한 연구)

  • 이호영;박홍식;신현경
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.7-12
    • /
    • 2000
  • As the offshore oil fields are moved to the deep ocean, the oil production systems of FPSO(Floating production storage and offloading system) are building these days and so it is the most important to estimate the drift motion and damping effects the drift motion importantly. The components of damping consist of viscous, wave radiation effect and wave drift damping. It is need to estimate the wave drift damping exactly among them. The wave drift damping means the change rate of mean wave drift force with respect to the ship and ocean structures speed. In order to calculate this, the 3-Dimensional panel method used to translating and pulsating Green function is adopted. The calculation is carried out for series 60(CB = 0.7) vessel and the results are compared with other theoretical ones.

  • PDF

A Study on the Wave Drift Damping of a Moored Ship in Waves (파랑중 계류된 선박의 표류감쇠에 관한 연구)

  • 이호영;박홍식;신현경
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.17-22
    • /
    • 2000
  • As the offshore oil fields are moved to the deep ocean, the oil production system of FPSO(Floating Production Storage and Offloading System) Type are constructed frequently these days. So, it is very important to estimate the drift motion and damping effects due to the drift motion simultaneously. The components of slow drift motion damping consist of viscous, wave radiation effect and wave drift damping. It is needed to estimate the wave drift damping more accurately than others. The wave drift damping signifies the time-rate of mean wave drift force on oscillating ship or ocean structure which constant speed. In order to calculate this, the 3-Dimensional panel method is employed with the translating and pulsating Green function in the frequency domain. The calculation is carried out for a Series 60 ($C_B$/=0.7) and the results are compared with other numerical ones.

  • PDF

Numerical analysis of an offshore platform with large partial porous cylindrical members due to wave forces

  • Park, Min-Su;Kawano, Kenji;Nagata, Shuichi
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.337-353
    • /
    • 2011
  • In the present study, an offshore platform having large partial porous cylindrical members, which are composed of permeable and impermeable cylinders, is suggested. In order to calculate the wave force on large partial porous cylindrical members, the fluid domain is divided into three regions: a single exterior region, N inner regions and N beneath regions, and the scattering wave in each fluid region is expressed by an Eigen-function expansion method. Applying Darcy's law to the porous boundary condition, the effect of porosity is simplified. Wave excitation forces and wave run up on the structures are presented for various wave conditions. For the idealized three-dimensional platform having large partial porous cylindrical members, the dynamic response evaluations of the platform due to wave forces are carried out through the modal analysis. In order to examine the effects of soil-structure interaction, the substructure method is also applied. The displacement and bending stress at the selective nodal points of the structure are computed using various input parameters, such as the shear-wave velocity of soil, the wave height and the wave period. Applying the Monte Carlo Simulation (MCS) method, the reliability evaluations at critical structure members, which contained uncertainties caused by dynamic forces and structural properties, are examined by the reliability index with the results obtained from MCS.

Response State of EEG Wave Type on Visual Cortex According to Color Vision Target (색각 시표에 따른 시피질 뇌파의 반응 상태)

  • Kim, Douk Hoon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.2
    • /
    • pp.5-9
    • /
    • 2000
  • The visual evoked potential was electrophysiological method for the identify of the EEG response on visual cortex. This test was objective test method on the eye function. This study was used the visual evoked potential for the objective color test. The subjects was a normal color function in Korean adults. The test condition was performed on the differens distance and illumination. According to convergence condition of color vision target. On the appearance of EEG wave of visual stimulation on visual cortex. The most EEG wave style was delta wave, and the next amount wave form was beta wave and theta wave, and the least EEG wave form was alpha wave. The histogram of amplitude of EEG wave form was almost non-Gaussian shape, and the phase diagram of amplitude was almost all linear shape. On the kinds of color vision target, the frequency of EEG wave style appeared a similar results.

  • PDF

A Numerical Model of Nonlinear Stream Function Wave Theory by the Least Squares Method (최소자승법을 사용한 유량함수 비선형 파랑이론의 수치모형)

  • 서승남
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.4
    • /
    • pp.340-352
    • /
    • 1994
  • A numerical model of nonlinear stream function wave theory evolved from Dean's model (1965) is presented. The stream function theory has been evaluated to be an accurate and useful tool for engineering applications. Effects of damping coefficient employed in a linearized simultaneous equation and number of points in the numerical integration of model on numerical solutions are assessed. Most accurate wave characteristics calculated by the present model are tabulated using revised Dean's Table (Chaplin, 1980) input parameters. Since the well-known feature of nearly breaking waves that with increasing wave steepness the wave length as well as integral properties have a maximum prior to the limiting wave height is represented by the model, the accuracy of model can be proved.

  • PDF

Wave Energy Absorption Efficiency of Pneumatic Chamber of OWC Wave Energy Conveter (진동수주형 파력발전장치 공기챔버의 파력에너지 흡수효율)

  • Hong, Key-Yong;Shin, Seung-Ho;Hong, Do-Chun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.621-625
    • /
    • 2007
  • Oscillating wave amplitude in a bottom-mounted owe chamber designed for wave energy converter is investigated by applying characteristic wave conditions in Korean coastal water. The effects of shape parameters of OWC chamber in a view of wave energy absorbing capability are analyzed. Both experimental and numerical approaches are adopted and their results are compared to optimize the shape parameters which can result in a maximum power production under given wave distribution. The experiment was carried out in a wave flume under 2-D assumption of OWC chamber. In numerical scheme, the potential problem inside the chamber is solved by use of the Green integral equation associated with the Rankine Green function, while outer problem with the Kelvin Green function taking account of fluctuating air pressure in the chamber. Air duct diameter, chamber width, and submerged depths of front skirt and back wall of chamber changes the magnitude and peak frequency of wave absorption significantly.

  • PDF