• Title/Summary/Keyword: wave dispersion analysis

Search Result 192, Processing Time 0.028 seconds

Analysis of wave motion in an anisotropic initially stressed fiber-reinforced thermoelastic medium

  • Gupta, Raj Rani;Gupta, Rajani Rani
    • Earthquakes and Structures
    • /
    • v.4 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • The present investigation deals with the analysis of wave motion in the layer of an anisotropic, initially stressed, fiber reinforced thermoelastic medium. Secular equations for symmetric and skew-symmetric modes of wave propagation in completely separate terms are derived. The amplitudes of displacements and temperature distribution were also obtained. Finally, the numerical solution was carried out for Cobalt and the dispersion curves, amplitudes of displacements and temperature distribution for symmetric and skew-symmetric wave modes are presented to evince the effect of anisotropy. Some particular cases are also deduced.

Wave dispersion analysis of rotating heterogeneous nanobeams in thermal environment

  • Ebrahimi, Farzad;Haghi, Parisa
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.21-37
    • /
    • 2018
  • In the present article, wave dispersion behavior of a temperature-dependent functionally graded (FG) nanobeam undergoing rotation subjected to thermal loading is investigated according to nonlocal strain gradient theory, in which the stress numerates for both nonlocal stress field and the strain gradient stress field. The small size effects are taken into account by using the nonlocal strain gradient theory which contains two scale parameters. Mori-Tanaka distribution model is considered to express the gradually variation of material properties across the thickness. The governing equations are derived as a function of axial force due to centrifugal stiffening and displacements by applying Hamilton's principle according to Euler-Bernoulli beam theory. By applying an analytical solution, the dispersion relations of rotating FG nanobeam are obtained by solving an eigenvalue problem. Obviously, numerical results indicate that various parameters such as angular velocity, gradient index, temperature change, wave number and nonlocality parameter have significant influences on the wave characteristics of rotating FG nanobeams. Hence, the results of this research can provide useful information for the next generation studies and accurate deigns of nanomachines including nanoscale molecular bearings and nanogears, etc.

A nonlocal strain gradient theory for scale-dependent wave dispersion analysis of rotating nanobeams considering physical field effects

  • Ebrahimi, Farzad;Haghi, Parisa
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.373-393
    • /
    • 2018
  • This paper is concerned with the wave propagation behavior of rotating functionally graded temperature-dependent nanoscale beams subjected to thermal loading based on nonlocal strain gradient stress field. Uniform, linear and nonlinear temperature distributions across the thickness are investigated. Thermo-elastic properties of FG beam change gradually according to the Mori-Tanaka distribution model in the spatial coordinate. The nanobeam is modeled via a higher-order shear deformable refined beam theory which has a trigonometric shear stress function. The governing equations are derived by Hamilton's principle as a function of axial force due to centrifugal stiffening and displacement. By applying an analytical solution and solving an eigenvalue problem, the dispersion relations of rotating FG nanobeam are obtained. Numerical results illustrate that various parameters including temperature change, angular velocity, nonlocality parameter, wave number and gradient index have significant effect on the wave dispersion characteristics of the understudy nanobeam. The outcome of this study can provide beneficial information for the next generation researches and exact design of nano-machines including nanoscale molecular bearings and nanogears, etc.

A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates

  • Karami, Behrouz;Janghorban, Maziar;Shahsavari, Davood;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.99-110
    • /
    • 2018
  • In this paper, a new size-dependent quasi-3D plate theory is presented for wave dispersion analysis of functionally graded nanoplates while resting on an elastic foundation and under the hygrothermaal environment. This quasi-3D plate theory considers both thickness stretching influences and shear deformation with the variations of displacements in the thickness direction as a parabolic function. Moreover, the stress-free boundary conditions on both sides of the plate are satisfied without using a shear correction factor. This theory includes five independent unknowns with results in only five governing equations. Size effects are obtained via a higher-order nonlocal strain gradient theory of elasticity. A variational approach is adopted to owning the governing equations employing Hamilton's principle. Solving analytically via Fourier series, these equations gives wave frequencies and phase velocities as a function of wave numbers. The validity of the present results is examined by comparing them with those of the known data in the literature. Parametric studies are conducted for material composition, size dependency, two parametric elastic foundation, temperature and moisture differences, and wave number. Some conclusions are drawn from the parametric studies with respect to the wave characteristics.

Guided Wave Mode Identification Using Wavelet Transform (웨이블릿 변환을 이용한 유도초음파의 모드 확인)

  • Ik-Keun Park
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.94-100
    • /
    • 2003
  • One of unique characteristics of guided waves is a dispersive behavior that guided wave velocity changes with an excitation frequency and mode. In practical applications of guided wave techniques, it is very important to identify propagating modes in a time-domain waveform for determination of detect location and size. Mode identification can be done by measurement of group velocity in a time-domain waveform. Thus, it is preferred to generate a single or less dispersive mode But, in many cases, it is difficult to distinguish a mode clearly in a time-domain waveform because of superposition of multi modes and mode conversion phenomena. Time-frequency analysis is used as efficient methods to identify modes by presenting wave energy distribution in a time-frequency. In this study, experimental guided wave mode identification is carried out in a steel plate using time-frequency analysis methods such as wavelet transform. The results are compared with theoretically calculated group velocity dispersion own. The results are in good agreement with analytical predictions and show the effectiveness of using the wavelet transform method to identify and measure the amplitudes of individual guided wave modes.

A Numerical Analysis on Elastodynamic Dispersion Phenomena of Composite Pipes

  • Cho, Youn-Ho;Lee, Chong-Myong;Rose Joseph L.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.222-227
    • /
    • 2005
  • An efficient technique fur the calculation of guided wave dispersion curves in composite pipes is presented. The technique uses a forward-calculating variational calculus approach rather than the guess and iterate process required when using the more traditional partial wave superposition technique. The formulation of each method is outlined and compared. The forward-calculating formulation is used to develop finite element software for dispersion curve calculation. Finally, the technique is used to calculate dispersion curves for several structures, including an isotropic bar, two multi-layer composite bars, and a composite pipe.

Determination of Mode Dispersion Curves of Surface Wave Using HWAW Method (HWAW(Harmonic Wavelet Analysis of Wave)방법을 이용한 표면파 모드 분산곡선의 결정)

  • Park, Hyung-Choon;Kim, Dong-Soo;Bang, Eun-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.15-24
    • /
    • 2006
  • The evaluation of shear modulus is very important in various fields of civil engineering. Non-destructive seismic methods can be used to determine shear wave velocity ($V_s$) profile. Non-destructive seismic methods geneally consist of three steps: field testing, evaluation of dispersion curve, and determination of Vs profile by inversion process. Non-destructive seismic methods can be divided into two categories according to the number of receivers used for data reduction: two-channel tests and multi-channel tests. Two channel tests use apparent velocity dispersion curve and multi-channel tests use mode dispersion curves. Multi-channel tests using mode dispersion curve can reduce calculation time to determine soil profile and uncertainties in inversion process. So far, only multi-channel tests can determine mode dispersion curves but multi-channel test needs many receivers to determine reasonable mode dispersion curves. In this paper, HWAW (Harmonic Wavelet Analysis of Wave) method is applied to determine mode dispersion curves. HWAW method uses short test setup which consists of two receivers with a spacing of 1 to 3 m. Through numerical simulations and field application, it is shown that HWAW can determine resonable mode disperson curves.

Effect of Hysteresis on Interface Waves in Contact Surfaces

  • Kim, Noh-Yu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.578-586
    • /
    • 2010
  • This paper describes a theoretical model and acoustic analysis of hysteresis of contacting surfaces subject to compression pressure. Contacting surfaces known to be nonlinear and hysteretic is considered as a simple spring that has a complex stiffness connecting discontinuous displacements between two solid contact boundaries. Mathematical formulation for 1-D interfacial wave propagation between two contacting solids is developed using the complex spring model to derive the dispersion relation between the interface wave speed and the complex interfacial stiffness. Existence of the interface wave propagating along the hysteretic interface is studied in theory and discussed by investigating the solution to the dispersion equation. Unlike the linear interface without hysteresis, there can exist only one distinct mode of interface waves for the hysteretic interface, which is anti-symmetric motion. The anti-symmetric mode of interface wave propagates with the velocity faster than the Rayleigh surface wave but less than the shear wave depending on the interfacial stiffness. If the contacting surfaces are compressed so much that the linear interfacial stiffness is very high, the hysteretic stiffness does not affect the interface wave velocity. However, it has an effect on the speed of interface wave for a loosely contact surfaces with a relatively low linear stiffness. It is also found that the phase velocity of anti-symmetric wave mode converges to the shear wave velocity in despite of the linear stiffness value if the hysteretic stiffness approaches 0.5.

Mode Characteristics Analysis of the SH-EMAT Waves for Evaluating the Thickness Reduction (두께감육 평가를 위한 SH-EMAT파의 모드특성 분석)

  • Park, I.K.;Kim, Y.K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.198-203
    • /
    • 2010
  • In this paper, study on the mode characteristics analysis of the SH-EMAT (shear horizontal, electromagnetic acoustic transducer) waves for evaluating the thickness reduction in plates such as corrosion and friction is presented. Noncontact methods for ultrasonic wave generation and detection have been a great concern and highly demanded due to their capability of wave generation and reception on surface of high temperature or on rough surface. Mode identification of the SH-EMAT wave is carried out in an aluminum plate with thinning defects using time frequency analysis method such as wavelet transform, compared with theoretically calculated group velocity dispersion curve. The changes of various wave features such as the amplitude and the time-of-flight have been observed and the correlations with the thickness reduction have been investigated. Firstly, experiments have been conducted to confirm that it is possible to selectively generate and receive specific desired SH modes. These modes have then been analyzed to select the parameters that are sensitive to the thickness change. The results show that the mode cutoff and the time-of-flight changes are feasible as key parameters to evaluate the thickness reduction.

Resonant Scattering of Underwater Acoustic Wave by Transversely Isotropic Cylindrical Shells (횡등방성 원통 셸에 의한 수중 음파의 공명 산란)

  • 김진연
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.449-455
    • /
    • 1997
  • A theoretical study is presented for the prediction of the scattering of obliquely incident plane acoustic wave by transversely isotropic cylindrical shells immersed in water. In dorder to illustrate the vailidity of the theory backscattering form functions are compared with the existing results for degenerated problems: the catterings by isotropic shell and transversely isotropic solid cylinder. The unidirectional fiber reinforced boron-aluminum composites are selected as a model of transversely isotropic materials having potential applications in practice. From the resonant scattering analysis of the partial backscattering form functions, the dispersion curves for fluid-borne Stoneley wave, guided wave along the shell, and the lowest three Lamb type waves can be found. The Lamb type dispersions are compared with those of the flat plate. The variation of anisotropy significantly affects the properties of circumferential waves. From these results, it can be possible to identify parametrically the material properties of anisotropic cylindrical targets.

  • PDF