• Title/Summary/Keyword: wave dispersion analysis

Search Result 192, Processing Time 0.021 seconds

The First Crustal Refraction Survey in the Korean Peninsula

  • Jung Mo Lee;Wooil Moon;Chang-Eob Baag;Heeok Jung;Ki Young Kim;Bong Gon Jo;Woohan Kim;Sung Kyun Kim
    • Proceedings of the International Union of Geodesy And Geophysics Korea Journal of Geophysical Research Conference
    • /
    • 2003.05a
    • /
    • pp.15-15
    • /
    • 2003
  • The first crustal refraction survey in the Korean Peninsula was carried out over the survey line connecting Seosan-Yeongdong-Kyeongiu on Dec. 15, 2002. The total length of the survey line was about 300 Km and 198 portable seismometers were deployed with approximately 1.5-km interval. The survey line itself was geologically important since it was almost normal to the so-called Sino-Korean structural trend. Two shots, one at Seosan (west end point) and the other at Yeongdong (mid-point), were exploded. They were 100-m deep drill well explosions. The Seosan shot consisted of a ton emulsion type explosive, while Youngdong consisted of 500 kg one. Both shots generated signals with good S/N ratios to the farthest receivers. Seismic signals were recorded by 195 receivers out of 198 ones. Although the originally planned Kyeongju shot (east end point) could not be exploded due to public discontent, the experiment was evaluated very successful. First breaks in all recorded traces were picked up and two preliminary analyses were carried out. The one is conventional flat layer analysis and the other was refraction tomographic analysis. The one resulted in average 32-km thick two-layer crust and the underlying mantle with 8.05-km/s P-velocity. The top crust layer with 3.86 kw/s P-velocity was 2.5-km thick and the lower crust layer with 6.0l km/s P-velocity was 29.5-km thick. The other resulted in a velocity cross-section. The confidence level of the velocity cross-section could not be evaluated at this time because only two shot were exploded. Detailed analyses such as surface wave dispersion are on going. Continuing crustal scale refraction surveys are planned in Korea.

  • PDF

Analysis of Steady and Unsteady Flow Around a Ship Using a Higher-Order Boundary Element Method (고차경계요소법에 의한 선체주위 유동해석)

  • Sa-Y. Hong;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.42-57
    • /
    • 1995
  • An efficient and accurate scheme has been constructed by taking advantages of the hi-quadratic spline scheme and the higher-order boundary element method selectively depending on computation domains. Boundary surfaces are represented by 8-node boundary elements to describe curved surfaces of a ship and its neighboring free surface more accurately. The variation of the velocity potential complies with the characteristics of the 8-node element on the body surface. But on the free surface, it is assumed to follow that of the hi-quadratic spline scheme. By which, the free surface solution is free from numerical damping and has better numerical dispersion property. As numerical examples, steady and unsteady Neumann-Kelvin problems are considered. Numerical results for a submerged spheroid, Series 60($C_B=0.6$) and a modified support the proposed method. Finally, a new upstream radiation condition is derived using a wave equation operator in order to deal with problems for subcritical reduced frequency. The relevance of this operator has been confirmed in the case of unsteady Kelvin source potential.

  • PDF