• Title/Summary/Keyword: wav2vec

Search Result 9, Processing Time 0.02 seconds

Diagnosis of Parkinson's disease based on audio voice using wav2vec (Wav2vec을 이용한 오디오 음성 기반의 파킨슨병 진단)

  • Yoon, Hee-Jin
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.353-358
    • /
    • 2021
  • Parkinson's disease is the second most common degenerative brain disease after Alzheimer's in old age. Symptoms of Parkinson's disease are factors that reduce the quality of life in daily life, such as shaking hands, slowing behavior and cognitive function. Parkinson's disease that can slow the progression of the disease through early diagnosis. To diagnoze Parkinson's disease early, an algorithm was implemented to extract features using wav2vec and to diagnose the presence or absence of Parkinson's disease with deep learning(ANN). As a results of the experiment, the accuracy was 97.47%. It was better than the results of diagnosing Parkinson's disease using the existing neural network. The audio voice file could simply reduce the experiment process and obtain improved results.

Language Specific CTC Projection Layers on Wav2Vec2.0 for Multilingual ASR (다국어 음성인식을 위한 언어별 출력 계층 구조 Wav2Vec2.0)

  • Lee, Won-Jun;Lee, Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.414-418
    • /
    • 2021
  • 다국어 음성인식은 단일언어 음성인식에 비해 높은 난이도를 보인다. 하나의 단일 모델로 다국어 음성인식을 수행하기 위해선 다양한 언어가 공유하는 음성적 특성을 모델이 학습할 수 있도록 하여 음성인식 성능을 향상시킬 수 있다. 본 연구는 딥러닝 음성인식 모델인 Wav2Vec2.0 구조를 변경하여 한국어와 영어 음성을 하나의 모델로 학습하는 방법을 제시한다. CTC(Connectionist Temporal Classification) 손실함수를 이용하는 Wav2Vec2.0 모델의 구조에서 각 언어마다 별도의 CTC 출력 계층을 두고 각 언어별 사전(Lexicon)을 적용하여 음성 입력을 다른 언어로 혼동되는 경우를 원천적으로 방지한다. 제시한 Wav2Vec2.0 구조를 사용하여 한국어와 영어를 잘못 분류하여 음성인식률이 낮아지는 문제를 해결하고 더불어 제시된 한국어 음성 데이터셋(KsponSpeech)에서 한국어와 영어를 동시에 학습한 모델이 한국어만을 이용한 모델보다 향상된 음성 인식률을 보임을 확인하였다. 마지막으로 Prefix 디코딩을 활용하여 언어모델을 이용한 음성인식 성능 개선을 수행하였다.

  • PDF

Data Sampling Strategy for Korean Speech Emotion Classification using wav2vec2.0 (wav2vec2.0을 활용한 한국어 음성 감정 분류를 위한 데이터 샘플링 전략)

  • Mirr-Shin;Youhyun Shin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.493-494
    • /
    • 2023
  • 음성 기반의 감정 분석은 인간의 감정을 정확하게 파악하는 데 중요한 연구 분야로 자리잡고 있다. 최근에는 wav2vec2.0과 같은 트랜스포머 기반의 모델이 음성 인식 분야에서 뛰어난 성능을 보이며 주목받고 있다. 본 연구에서는 wav2vec2.0 모델을 활용하여 한국어 감성 발화 데이터에 대한 감정 분류를 위한 데이터 샘플링 전략을 제안한다. 실험을 통해 한국어 음성 감성분석을 위해 학습 데이터를 활용할 때 감정별로 샘플링하여 데이터의 개수를 유사하게 하는 것이 성능 향상에 도움이 되며, 긴 음성 데이터부터 이용하는 것이 성능 향상에 도움이 됨을 보인다.

Development and Utilization of Speech Recognition Service for Ship Radio Communication (선박무선통신 음성인식 서비스 개발 및 활용)

  • Kwang-Il Kim;Sang-Lok Yoo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.236-237
    • /
    • 2023
  • 선박무선통신장비는 선박이 항해하는데 필요한 안전정보, 선박교통 모니터링 및 관제, 입·출항 정보를 교환하기 위한 필수 장비이므로 선박항해사는 무선통신 내용을 항상 주의 깊게 청취해야 함. 본 연구에서는 선박의 실제 음성 교신데이터 500시간 데이터를 수집 및 학습하고, Wav2Vec 및 Whisper 모델을 활용하여 한글 및 영어(해사영어) 음성인식 모델을 개발하고 실용화를 수행하였다. 음성인식 모델의 성능은 CER(Character Error Rate) 기준 94.5%로 향후 선박 운항 관련 댜양한 분야에 적용이 가능할 것으로 사료된다.

  • PDF

Efficient Emotion Classification Method Based on Multimodal Approach Using Limited Speech and Text Data (적은 양의 음성 및 텍스트 데이터를 활용한 멀티 모달 기반의 효율적인 감정 분류 기법)

  • Mirr Shin;Youhyun Shin
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.4
    • /
    • pp.174-180
    • /
    • 2024
  • In this paper, we explore an emotion classification method through multimodal learning utilizing wav2vec 2.0 and KcELECTRA models. It is known that multimodal learning, which leverages both speech and text data, can significantly enhance emotion classification performance compared to methods that solely rely on speech data. Our study conducts a comparative analysis of BERT and its derivative models, known for their superior performance in the field of natural language processing, to select the optimal model for effective feature extraction from text data for use as the text processing model. The results confirm that the KcELECTRA model exhibits outstanding performance in emotion classification tasks. Furthermore, experiments using datasets made available by AI-Hub demonstrate that the inclusion of text data enables achieving superior performance with less data than when using speech data alone. The experiments show that the use of the KcELECTRA model achieved the highest accuracy of 96.57%. This indicates that multimodal learning can offer meaningful performance improvements in complex natural language processing tasks such as emotion classification.

Design and Development of Open-Source-Based Artificial Intelligence for Emotion Extraction from Voice

  • Seong-Gun Yun;Hyeok-Chan Kwon;Eunju Park;Young-Bok Cho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.79-87
    • /
    • 2024
  • This study aims to improve communication for people with hearing impairments by developing artificial intelligence models that recognize and classify emotions from voice data. To achieve this, we utilized three major AI models: CNN-Transformer, HuBERT-Transformer, and Wav2Vec 2.0, to analyze users' voices in real-time and classify their emotions. To effectively extract features from voice data, we applied transformation techniques such as Mel-Frequency Cepstral Coefficient (MFCC), aiming to accurately capture the complex characteristics and subtle changes in emotions within the voice. Experimental results showed that the HuBERT-Transformer model demonstrated the highest accuracy, proving the effectiveness of combining pre-trained models and complex learning structures in the field of voice-based emotion recognition. This research presents the potential for advancements in emotion recognition technology using voice data and seeks new ways to improve communication and interaction for individuals with hearing impairments, marking its significance.

Enhancing Korean Alphabet Unit Speech Recognition with Neural Network-Based Alphabet Merging Methodology (한국어 자모단위 음성인식 결과 후보정을 위한 신경망 기반 자모 병합 방법론)

  • Solee Im;Wonjun Lee;Gary Geunbae Lee;Yunsu Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.659-663
    • /
    • 2023
  • 이 논문은 한국어 음성인식 성능을 개선하고자 기존 음성인식 과정을 자모단위 음성인식 모델과 신경망 기반 자모 병합 모델 총 두 단계로 구성하였다. 한국어는 조합어 특성상 음성 인식에 필요한 음절 단위가 약 2900자에 이른다. 이는 학습 데이터셋에 자주 등장하지 않는 음절에 대해서 음성인식 성능을 저하시키고, 학습 비용을 높이는 단점이 있다. 이를 개선하고자 음절 단위의 인식이 아닌 51가지 자모 단위(ㄱ-ㅎ, ㅏ-ㅞ)의 음성인식을 수행한 후 자모 단위 인식 결과를 음절단위의 한글로 병합하는 과정을 수행할 수 있다[1]. 자모단위 인식결과는 초성, 중성, 종성을 고려하면 규칙 기반의 병합이 가능하다. 하지만 음성인식 결과에 잘못인식된 자모가 포함되어 있다면 최종 병합 결과에 오류를 생성하고 만다. 이를 해결하고자 신경망 기반의 자모 병합 모델을 제시한다. 자모 병합 모델은 분리되어 있는 자모단위의 입력을 완성된 한글 문장으로 변환하는 작업을 수행하고, 이 과정에서 음성인식 결과로 잘못인식된 자모에 대해서도 올바른 한글 문장으로 변환하는 오류 수정이 가능하다. 본 연구는 한국어 음성인식 말뭉치 KsponSpeech를 활용하여 실험을 진행하였고, 음성인식 모델로 Wav2Vec2.0 모델을 활용하였다. 기존 규칙 기반의 자모 병합 방법에 비해 제시하는 자모 병합 모델이 상대적 음절단위오류율(Character Error Rate, CER) 17.2% 와 단어단위오류율(Word Error Rate, WER) 13.1% 향상을 확인할 수 있었다.

  • PDF

Speech Emotion Recognition in People at High Risk of Dementia

  • Dongseon Kim;Bongwon Yi;Yugwon Won
    • Dementia and Neurocognitive Disorders
    • /
    • v.23 no.3
    • /
    • pp.146-160
    • /
    • 2024
  • Background and Purpose: The emotions of people at various stages of dementia need to be effectively utilized for prevention, early intervention, and care planning. With technology available for understanding and addressing the emotional needs of people, this study aims to develop speech emotion recognition (SER) technology to classify emotions for people at high risk of dementia. Methods: Speech samples from people at high risk of dementia were categorized into distinct emotions via human auditory assessment, the outcomes of which were annotated for guided deep-learning method. The architecture incorporated convolutional neural network, long short-term memory, attention layers, and Wav2Vec2, a novel feature extractor to develop automated speech-emotion recognition. Results: Twenty-seven kinds of Emotions were found in the speech of the participants. These emotions were grouped into 6 detailed emotions: happiness, interest, sadness, frustration, anger, and neutrality, and further into 3 basic emotions: positive, negative, and neutral. To improve algorithmic performance, multiple learning approaches were applied using different data sources-voice and text-and varying the number of emotions. Ultimately, a 2-stage algorithm-initial text-based classification followed by voice-based analysis-achieved the highest accuracy, reaching 70%. Conclusions: The diverse emotions identified in this study were attributed to the characteristics of the participants and the method of data collection. The speech of people at high risk of dementia to companion robots also explains the relatively low performance of the SER algorithm. Accordingly, this study suggests the systematic and comprehensive construction of a dataset from people with dementia.

Multi-Emotion Regression Model for Recognizing Inherent Emotions in Speech Data (음성 데이터의 내재된 감정인식을 위한 다중 감정 회귀 모델)

  • Moung Ho Yi;Myung Jin Lim;Ju Hyun Shin
    • Smart Media Journal
    • /
    • v.12 no.9
    • /
    • pp.81-88
    • /
    • 2023
  • Recently, communication through online is increasing due to the spread of non-face-to-face services due to COVID-19. In non-face-to-face situations, the other person's opinions and emotions are recognized through modalities such as text, speech, and images. Currently, research on multimodal emotion recognition that combines various modalities is actively underway. Among them, emotion recognition using speech data is attracting attention as a means of understanding emotions through sound and language information, but most of the time, emotions are recognized using a single speech feature value. However, because a variety of emotions exist in a complex manner in a conversation, a method for recognizing multiple emotions is needed. Therefore, in this paper, we propose a multi-emotion regression model that extracts feature vectors after preprocessing speech data to recognize complex, inherent emotions and takes into account the passage of time.