• Title/Summary/Keyword: watershed runoff

Search Result 1,050, Processing Time 0.033 seconds

A Study on the Estimation of Pollutant Runoff using GIS data and Application to the Closed Watershed (GIS 데이터를 이용한 오염 유출량의 해석과 폐쇄성 수역의 적용에 관한 연구)

  • 강상혁;김승호;권재혁;노구정인
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.263-273
    • /
    • 2002
  • This paper presents desirable water environmental management to a closed watershed. In order to obtain spatially distributed environmental information, GIS data have been used. Elevation data are used to extract stream channels automatically and to divide networks of a watershed. A Digital Elevation Model (DEM) has been developed, validated, and adopted to estimate the runoff of total nitrogen pollutant from watershed. This GIS-linked model can be applied effectively to the watersheds with many sub-streams, and for the estimation of pollutant runoff considering land use change.

  • PDF

Assessment of the impact of climate variability on runoff change of middle-sized watersheds in Korea using Budyko hypothesis-based equation (Budyko 가설 기반 기후 탄력성을 고려한 기후변동이 우리나라 중권역 유출량 변화에 미치는 영향 평가)

  • Oh, Mi Ju;Hong, Dahee;Lim, Kyung Jin;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.4
    • /
    • pp.237-248
    • /
    • 2024
  • Watershed runoff that is an important component of the hydrological processes has been significantly altered by climate variability and human activities in many watersheds around the world. It is important to investigate the impacts of climate variability and human activities on watershed runoff change for water resource management. In this study, using watershed runoff data for 109 middle-sized watersheds in Korea, the impacts of climate variability and human activities on watershed runoff change were quantitatively evaluated. Using the Pittitt test, the analysis period was divided into two sub-periods, and the impacts of climate variability and human activities on the watershed runoff change were quantified using the Budyko hypothesis-based climate elasticity method. The overall results indicated that the relative contribution of climate variability and human activities to the watershed runoff change varied by middle-sized watersheds, and the dominant factors on the watershed runoff change were identified for each watershed among climate variability and human activities. The results of this study enable us to predict the watershed runoff change considering climate variability and watershed development plans, which provides useful information for establishing a water resource management plan to reduce the risk of hydrological disasters such as drought or flood.

L-THIA/NPS to Assess the Impacts of Urbanization on Estimated Runoff and NPS Pollution (도시화에 따른 유출과 비점원 오염 영향을 평가하기 위한 L-THIA/NPS)

  • Kyoung-Jae Lim;Bernard A. Engel;Young-Sug Kim;Joong-Dae Choi;Ki-Sung Kim
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.78-88
    • /
    • 2003
  • The land use changes from non-urban areas to urban areas lead to the increased impervious areas, consequently increased direct runoff and higher peak runoff. Urban areas have also been recognized as significant sources of Nonpoint Source (NPS) pollution, while agricultural activities have been known as the primary sources of NPS pollution. Many features of the L-THIA/NPS GIS, L-THIA/NPS WWW system have been enhanced to provide easy-to-use system. The L-THIA model was applied to the Little Eagle Creek (LEC) watershed in Indiana to evaluate the accuracy of the model. The L-THIA/NPS GIS estimated yearly direct runoff values match the direct runoff separated from U.S. Geological Survey stream flow data reasonably. The $R^2$ and Nash-Sutcliffe values are 0.67 and 0.60, respectively. The L-THIA estimated runoff volume and total nitrogen loading for each land use classification in the LEC watershed were computed. The estimated runoff volume and total nitrogen loading in the LEC watershed increased by 180% and 270% for the 20 years. Urbanized areas -"Commercial", "High Density Residential", and "Low Density Residential"- of the LEC watershed made up around 68% of the 1991 total land areas, however contributed more than 92% of average annual runoff and 86% of total nitrogen loading. Therefore, it is essential to consider the impacts of land use change on hydrology and water quality in land use planning of urbanizing watershed.nning of urbanizing watershed.

Application of SDAHL-74 Watershed Model to a Long Term Runoff Analysis in the Mountainous Watershed (산지유역에 대한 USDAHL-74 유역수문모형의 장기유출 해석적용)

  • 권순국;고덕구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.2
    • /
    • pp.53-63
    • /
    • 1987
  • Due to their wide range of application, deterministic comprehensive hydrologic models using digital computers have been developed in all countries of the world and researches are being undertaken for their appropriate applications. The aim of this study has been to demonstrate the practical implementation of a physically based distributed hydrologic model, the USDAHL-74 model and to investigate its ability to simulate the long term estimate of water balance quantities in a Korean mountainous watershed. Application of the model to Dochuk watershed indicates the following results. 1.Since the USDAHL-74 model includes all the major components of the hydrologic cycle in agricultural watersheds, thus is comprehnsive, the model seems to have a wide range of application from the fact that simulation results obtained are not only runoff volumes m various time units but their spatial variation as well as even soil moisture within the watershed. 2.An approximate calibration to determine the parameter values in the model using various data obtained from D0chuk shed shows that the simulation error of yearly runoff volume is only 0.6 % and a correlation coefficient between observed daily runoff volume and simulated one is 0.91 in all calibrated period.3.As a verification test of the model, runoff volumes are simulated using 1986 year data without changing the parameter values determined by 1985 year data. The tests show that the USDAHL-74 model is a flexible tool and that realistic production to simulate the long term estimate of runoff in Korean mountainous watershed could be obtained using only a short period of calibration.4. Despite of the encouraging results, there still remain minor problems concerning the practical application of the model to improve the result of simulations. Some of these are the small descrepancies between observed and simulated daily runoff volume appeared in the vicinity of peaks and the recession of1 the daily hydrographs and the model performance for the frozen ground and melting process in the model. 5. Alough the use of parameter with physical significance and the ability to improve calibrations on the basis of physical reasoning represents advantages in the simulation for ungaged watersheds, further researches are needed to use the USDAHL-74 mode to simulate runoff in ungaged watersheds.

  • PDF

A Method of Simulating Ephemeral Stream Runoff Characteristics in Cheonmi-cheon Watershed, Jeju Island (제주 천미천 유역의 간헐하천 유출특성 모의 방안)

  • Kim, Nam-Won;Chung, Il-Moon;Na, Hanna
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.523-531
    • /
    • 2013
  • In this study, a method of simulating ephemeral stream runoff characteristics in Jeju watershed is newly suggested. The process based conceptual-physical scheme is established based on the SWAT-K and applied to Cheonmi-cheon watershed which shows the typical pattern of ephemeral stream runoff characteristics. For the proper simulation of this runoff, the intermediate flow and baseflow are controlled to make downward percolation should be dominant. The result showed that surface runoff simulated by using the modified scheme showed good agreement with observed runoff data. In addition, it was found that the estimated runoff directly affected the groundwater recharge rate. This conceptual model should be continuously progressed including rainfall interception, spatially estimated evapotranspiration and so forth for the reasonable simulation of the hydrologic characteristics in Jeju island.

Development of Threshold Runoff Simulation Method for Runoff Analysis of Jeju Island (제주도 유출분석을 위한 한계유출 모의기법 개발)

  • Chung, Il-Moon;Lee, Jeong-Woo;Kim, Ji-Tae;Na, Han-Na;Kim, Nam-Won
    • Journal of Environmental Science International
    • /
    • v.20 no.10
    • /
    • pp.1347-1355
    • /
    • 2011
  • In Jeju island, runoff has frequently happened when the rainfall depth is over a threshold value. To simulated this characteristic rainfall-runoff model structure has to be modified. In this study, the TRSM (Threshold Runoff Simulation Method) was developed to overcome the limitations of SWAT in applying to the hydrologic characteristics of Jeju island. When the precipitation and soil water are less than threshold value, we revised the SWAT routine not to make surface/lateral or groundwater discharge. For Hancheon watershed, the threshold value was set as 80% of soil water through the analysis of rainfall-runoff relationship. Through the simulation of test watershed, it was proven that TRSM performed much better in simulating pulse type stream flow for the Hancheon watershed.

Development of Ridge Regression Model of Pollutant Load Using Runoff Weighted Value Based on Distributed Curve-Number (분포형 CN 기반 토지피복별 유출가중치를 이용한 오염부하량 능형회귀모형 개발)

  • Song, Chul Min;Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.111-120
    • /
    • 2018
  • The purpose of this study was to develop a ridge regression (RR) model to estimate BOD and TP load using runoff weighted value. The concept of runoff weighted value, based on distributed curve-number (CN), was introduced to reflect the impact of land covers on runoff. The estimated runoff depths by distributed CN were closer to the observed values than those by area weighted mean CN. The RR is a technique used when the data suffers from multicollinearity. The RR model was developed for five flow duration intervals with the independent variables of daily runoff discharge of seven land covers and dependent variables of daily pollutant load. The RR model was applied to Heuk river watershed, a subwatershed of the Han river watershed. The variance inflation factors of the RR model decreased to the value less than 10. The RR model showed a good performance with Nash-Sutcliffe efficiency (NSE) of 0.73 and 0.87, and Pearson correlation coefficient of 0.88 and 0.93 for BOD and TP, respectively. The results suggest that the methods used in the study can be applied to estimate pollutant load of different land cover watersheds using limited data.

Analysis of Rainfall-Runoff Characteristic at Mountainous Watershed Using GeoWEPP and SWAT Model (GeoWEPP과 SWAT 모델을 이용한 산지 유역 강우-유출량 특성 분석)

  • Kim, Jisu;Kim, Minseok;Kim, Jin Kwan;Oh, Hyun-Joo;Woo, Choongshik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.2
    • /
    • pp.31-44
    • /
    • 2021
  • Due to recent climate change, continuous soil loss is occurring in the mountainous watershed. The development of geographic information systems allows the spatial simulation of soil loss through hydrological models, but more researches applied to the mountain watershed areas in Korea are needed. In this study, prior to simulating the soil loss characteristics of the mountainous watershed, the field monitoring and the SWAT and GeoWEPP models were used to simulate and analyze the rainfall and runoff characteristics in the mountainous watershed area of Jirisan National Park. As a result of monitoring, runoff showed a characteristic of a rapid response as rainfall increased and decreased. In the simulation runoff results of calibrated SWAT models, R2, RMSE and NSE was 0.95, 0.03, and 0.95, respectively. The runoff simulation results of the GeoWEPP model were evaluated as 0.89, 0.30, and 0.83 for R2, RMSE, and NSE, respectively. These results, therefore, imply that the runoff simulated through SWAT and GeoWEPP models can be used to simulate soil loss. However, the results of the two models differ from the parameters and base flow of actual main channel, and further consideration is required to increase the model's accuracy.

Runoff Characteristics by Urbanization in the Mushim Stream Watershed using HEC-BMS (HEC-HMS를 활용한 무심천 유역내 도시화에 의한 유출 특성)

  • Yoon, Seok-Hwan;Lee, Jong-Hyeong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.3
    • /
    • pp.43-54
    • /
    • 2004
  • For a given watershed that consists of urbanized areas, it was essential to predict how the runoff characteristics, such as runoff peak and volume, and travel time, change with time far planning and designing various kinds of hydraulic facilities with given recurrence interval. In this study, Mushim stream watershed was simulated using HEC-HMS model to get runoff characteristics of an urbanization basin. The results was showed that runoff was increased $1794.20{\sim}2104.65\;m^{3}/s$> and $1751.90{\sim}1961.30\;m^{3}/s$ according to the increased of rainfall and CN value recurrence interval in years. Observed storm was increased $497.91{\sim}581.71\;m^{3}/s$ and $506.57{\sim}537.01\;m^{3}/s$ for increased of CN value and impervious area. This paper is also possible to evaluate the effect of urbanization quantitatively.

GIS Application Model for Spatial Simulation of Surface Runoff from a Small Watershed( II) (소유역 지표유출의 공간적 해석을 위한 지리정보시스템의 응용모형(II) - 격자 물수지 모형을 위한 GIS응용 모형 개발 -)

  • 김대식;정하우;김성준;최진용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.5
    • /
    • pp.35-42
    • /
    • 1995
  • his paper is to develop a GIS application model (GISCELWAB) for the spatial simulation of surface runoff from a small watershed. The model was constituted by three submodels : The input data extraction model (GISINDATA) which prepares cell-based input data automatically for a given watershed, the cell water balance model (CELWAB) which calculates the water balance for a cell and simulates surface runoff of watershed simultaneously by the interaction of cells, and the output data management model (GISOUTDISP) which visualize the results of temporal and spatial variation of surface runoff. The input data extraction model was developed to solve the time-consuming problems for the input-data preparation of distributed hydrologic model. The input data for CELWAB can be obtained by extracting ASCII data from a vector map. The output data management model was developed to convert the storage depth and discharge of cells into grid map. This model enables to visualize the spatial formulation process of watershed storage depth and surface runoff wholly with time increment.

  • PDF