• Title/Summary/Keyword: watershed model

Search Result 1,600, Processing Time 0.031 seconds

The Allocation Methods for Economical Efficiency Using an Optimized Model (최적화 모델을 이용한 경제적인 총량관리 할당기법 연구)

  • Choi, In Uk;Shin, Dong Seok;Kim, Hong Tae;Park, Jae Hong;Ahn, Ki Hong;Kim, Yong Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.3
    • /
    • pp.295-303
    • /
    • 2015
  • In Korea, Total Maximum Daily Loads(TMDLs) has been enforced to restore and manage water quality in the watersheds. However, some assesment of implementation plan of TMDLs showed that the achievement of the target water quality is not related to the proper allocation loads because difference of flow duration interval. In the United States, the discharge loads are determined by water quality modeling considering standard flow conditions according to purpose. Therefore, this study tried to develop the allocation method considering economical efficiency using water quality model. For this purpose, several allocation methods being used in the management of TMDLs is investigated and develope an allocation criteria considering regional equality and uniformity. Since WARMF(Watershed Analysis Risk Management Framework) model can simulate the time varying behavior of a system and the various water quality variables, it was selected for a decision support system in this study. This model showed fairly good performance by adequately simulating observed discharge and water quality in Miho watershed. Furthermore, the scenario simulation results showed that the effect of annual average water quality improvement to remove 1kg BOD is more than 25 times, even if point pollutants treatment facility is six times more expensive to operate than non-point pollutants treatment facility.

Simulation of Soil Erosion due to Snow Melt at Alpine Agricultural Lands (고령지 농경지에서 융설에 의한 토양유실량 모의)

  • Heo, Sung-Gu;Lim, Kyoung-Jae;Kim, Ki-Sung;Myung, SaGong;An, Jae-Hun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.241-246
    • /
    • 2005
  • Doam watershed is located at alpine areas in the Kangwon province. The annual average precipitation, including snow accumulation during the winter, at the Doam watershed is significantly higher than other areas. Thus, pollutant laden runoff and sediment discharge from the alpine agricultural fields are causing water quality degradation at the Doam watershed. To estimate soil erosion from the agricultural fields, the Universal Soil Loss Equation (USLE) has been widely used because of its simplicity to use. The USLE rainfall erosivity (R) factor is responsible for impacts of rainfall on soil erosion. Thus, use of constant R factor for the Doam watershed cannot reflect variations in precipitation patterns, consequently soil erosion estimation. In the early spring at the Doam watershed, the stream flow increases because of snow melt, which results in erosion of loosened soil experiencing freezing and thaw during the winter. However, the USLE model cannot consider the impacts on soil erosion of freezing and thaw of the soil. Also, it cannot simulate temporal changes in USLE input parameters. Thus, the Soil and Water Assessment Tool (SWAT) model was investigated for its applicability to estimate soil erosion at the Doam watershed, instead of the widely used USLE model. The SWAT hydrology and erosion/sediment components were validated after calibration of the hydrologic component. The $R^2$ and Nash-Sutcliffe coefficient values are higher enough, thus it was found the SWAT model can be efficiently used to simulate hydrology and sediment yield at the Doam watershed. The effects of snow melt on SWAT estimated stream flow and sediment were investigated using long-term precipitation and temperature data at the Doam watershed. It was found significant amount of flow and sediment in the spring are contributed by melting snow accumulated during the winter. Thus, it is recommend that the SWAT model capable of simulating snow melt and long-term weather data needs to be used in estimating soil erosion at alpine agricultural land instead of the USLE model for successful soil erosion management at the Doam watershed.

  • PDF

The Characteristics and Experimental Application of AGNPS Model for Pollution Predicting in Small Watershed (소유역 오염예측모형 AGNPS 의 특성과 실험적 적용)

  • Choi, Jin-Kyu;Lee, Myung-Woo;Son, Jae-Gwon
    • Journal of Environmental Impact Assessment
    • /
    • v.3 no.2
    • /
    • pp.47-56
    • /
    • 1994
  • AGNPS model is an event-based model to analyze nonpoint-source and to examine potential water quality problems from agricultural watershed. This model uses a square grid-cell system to represent the spatial variability of watershed conditions, and simulates runoff, sediment, and nutrient transport for each cell. AGNPS model was applied on Yeonwha watershed, and the test results were compared with the measured data for runoff volume, peak runoff rate, suspended solids, and phosphorus concentration. The watershed of 278.8 ha was divided into 278 cells, each of which was 1 ha in size. The coefficients of determination for runoff volume and peak flow were (0.893 and 0.801 respectively from regression of the estimated values on the measured values. The concentration of suspendid solid was increased but decreased that of phosphate with runoff volume.

  • PDF

GIS Application Model for Spatial Simulation of Surface Runoff from a Small Watershed( II) (소유역 지표유출의 공간적 해석을 위한 지리정보시스템의 응용모형(II) - 격자 물수지 모형을 위한 GIS응용 모형 개발 -)

  • 김대식;정하우;김성준;최진용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.5
    • /
    • pp.35-42
    • /
    • 1995
  • his paper is to develop a GIS application model (GISCELWAB) for the spatial simulation of surface runoff from a small watershed. The model was constituted by three submodels : The input data extraction model (GISINDATA) which prepares cell-based input data automatically for a given watershed, the cell water balance model (CELWAB) which calculates the water balance for a cell and simulates surface runoff of watershed simultaneously by the interaction of cells, and the output data management model (GISOUTDISP) which visualize the results of temporal and spatial variation of surface runoff. The input data extraction model was developed to solve the time-consuming problems for the input-data preparation of distributed hydrologic model. The input data for CELWAB can be obtained by extracting ASCII data from a vector map. The output data management model was developed to convert the storage depth and discharge of cells into grid map. This model enables to visualize the spatial formulation process of watershed storage depth and surface runoff wholly with time increment.

  • PDF

Investigation on the Pollutant Delivery Characteristics using Physically Based Watershed Model (물리적 기반의 유역모형을 이용한 오염물질 유달 특성 규명)

  • Kim, Chul-Gyum;Kim, Nam-Won
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.256-267
    • /
    • 2009
  • A method of estimating pollutant delivery ratios considering watershed physical and meteorological characteristics and flow conditions using SWAT-K watershed model was described, and pollutant delivery characteristics during dry and rainy seasons, for monthly and seasonally, and with flow regimes were investigated for the Chungju dam watershed. Delivery ratios for sediment, T-N, and T-P showed higher values over 100% during dry and winter seasons with low pollutant loads and flows, and showed relatively uniform ones under 100% during rainy and summer seasons with concentrated loads and flows. It was found that mainly wet flows during summer seasons played very important roles in investigating the delivery characteristics of total or nonpoint pollutant loads, because more than 90% of total loads were influenced by nonpoint source, and discharged with the flows. From the results, we could find out the delivery characteristics with various watershed and flow conditions which are difficult to consider by actual measurement, and could get a foothold of estimating more reasonable and scientific allocated loads for water quality standard using the reliable method of estimating delivery ratios with a watershed model.

Estimation of Nitrate Leaching Rates for a Small Rural Watershed Using a Distributed Watershed Model (분포형 유역모델을 이용한 농촌지역 소유역의 질산성 질소 지하침출량 평가)

  • Park, Min-Hye;Park, Sunhwa;Kim, Hyun-Koo;Hwang, Jong-Yeon;Kim, Tae-seung;Chung, Hyen Mi;Cho, Hong-Lae;Lee, Taehwan;Koo, Bhon K.;Park, Yun Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.661-669
    • /
    • 2017
  • A distributed watershed model CAMEL (Chemicals, Agricultural Management and Erosion Losses) was applied to a small rural watershed where intensive livestock farming sites are located to estimate nitrate leaching rates from soil to groundwater. The model was calibrated against the stream flows, and T-N and $NO_3-N$ concentrations were observed at the watershed outlet for three rainfall events in 2014. The simulation results showed good agreement with the observed stream flows ($R^2=0.67{\sim}0.93$), T-N concentrations ($R^2=0.40{\sim}0.58$) and $NO_3-N$ concentrations ($R^2=0.43{\sim}0.65$). The estimated annual nitrate leaching rate of the watershed was 33.0 kg N/ha/yr. The contributing proportions of individual activities to the total nitrate leaching rate of the watershed were estimated for livestock farming, applications of chemical fertilizer, and manure. The simulation results showed that the highest contributor to the nitrate leaching rate of the watershed was chemical fertilizer applications. The simulation period was for one year only, however, and results may vary depending on different conditions. Gathering input data over a longer period of time and monitoring data for calibration is needed. When this has been accomplished, it is expected that this model can be applied to small rural watersheds for evaluating temporal and spatial variations of nitrogen transformations and transport processes.

Development and Evaluation of SWAT Topographic Feature Extraction Error(STOPFEE) Fix Module from Low Resolution DEM (저해상도 DEM 사용으로 인한 SWAT 지형 인자 추출 오류 개선 모듈 개발 및 평가)

  • Kim, Jong-gun;Park, Youn-shik;Kim, Nam-won;Chung, Il-moon;Jang, Won-seok;Park, Jun-ho;Moon, Jong-pil;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.488-498
    • /
    • 2008
  • Soil and Water Assessment Tool (SWAT) model have been widely used in simulating hydrology and water quality analysis at watershed scale. The SWAT model extracts topographic feature using the Digital Elevation Model (DEM) for hydrology and pollutant generation and transportation within watershed. Use of various DEM cell size in the SWAT leads to different results in extracting topographic feature for each subwatershed. So, it is recommended that model users use very detailed spatial resolution DEM for accurate hydrology analysis and water quality simulation. However, use of high resolution DEM is sometimes difficult to obtain and not efficient because of computer processing capacity and model execution time. Thus, the SWAT Topographic Feature Extraction Error (STOPFEE) Fix module, which can extract topographic feature of high resolution DEM from low resolution and updates SWAT topographic feature automatically, was developed and evaluated in this study. The analysis of average slope vs. DEM cell size revealed that average slope of watershed increases with decrease in DEM cell size, finer resolution of DEM. This falsification of topographic feature with low resolution DEM affects soil erosion and sediment behaviors in the watershed. The annual average sediment for Soyanggang-dam watershed with DEM cell size of 20 m was compared with DEM cell size of 100 m. There was 83.8% difference in simulated sediment without STOPFEE module and 4.4% difference with STOPFEE module applied although the same model input data were used in SWAT run. For Imha-dam watershed, there was 43.4% differences without STOPFEE module and 0.3% difference with STOPFEE module. Thus, the STOPFEE topographic database for Soyanggang-dam watershed was applied for Chungju-dam watershed because its topographic features are similar to Soyanggang-dam watershed. Without the STOPFEE module, there was 98.7% difference in simulated sediment for Chungju-dam watershed for DEM cell size of both 20 m and 100 m. However there was 20.7% difference in simulated sediment with STOPFEE topographic database for Soyanggang-dam watershed. The application results of STOPFEE for three watersheds showed that the STOPFEE module developed in this study is an effective tool to extract topographic feature of high resolution DEM from low resolution DEM. With the STOPFEE module, low-capacity computer can be also used for accurate hydrology and sediment modeling for bigger size watershed with the SWAT. It is deemed that the STOPFEE module database needs to be extended for various watersheds in Korea for wide application and accurate SWAT runs with lower resolution DEM.

Development of Synthetic Unit Hydrograph for Estimation of Runoff in Ungauged Watershed (미계측 유역의 유출량 산정을 위한 합성단위도 개발)

  • Choi, Yong Joon;Kim, Joo Cheol;Jeong, Dong Kug
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.532-539
    • /
    • 2010
  • The synthetic unit hydrograph is developed and verified using Nash model and characteristic velocities considering geomorphological dispersion in this present study. Application watersheds are selected 5 subwatersheds of Bocheong basin. The mean and variance of hillslope and stream path length are estimated in each watershed with GIS. Characteristic velocities are calculated using estimated path lengths and moment characteristics of rainfall-runoff data. Characteristic velocities of random devised 7 ungauged watersheds are estimated through regional analysis of chracteristic velocities in guaged watershed. And Nash model parameters and IUH are derived using characteristic velocities and path length in the gauged and ungauged watershed. The result to compare of IUH about gauged watershed and random devised ungauged watershed in application watershed presents coherently hydrologic response characteristics that peak discharge is reduced and peak time is extended. In conclusion, Developed synthetic unit hydrograph in this study expects that it is useful method to estimate runoff discharge for managing of water pollution in ungauged watershed.

Development of GRld-eased Soil MOsture Routing Model (GRISMORM) Applied to Bocheongchun Watershed (격자기반의 토양수분추적표형 개발 : 보청천 유역 사례연구)

  • 김성준;채효석
    • Spatial Information Research
    • /
    • v.7 no.1
    • /
    • pp.39-48
    • /
    • 1999
  • A GRId-based Soil MOsture Routing Model(GRISMORM) which predicts temporal variation and spatial distribution of water balance on a daily time step for each grid element of the watershed was developed. The model was programmed by C-language which aims for high flexibility to any kind of GIS softwares. The model uses ASCII-formatted map data supported by the irregular gridded map of the GRASS(Geographic Resources Analysis Support System)-GIS and generates daily or monthly spatial distribution map of water balance components within the watershed. The model was applied to Ipyunggyo watershed(75.6$km^2$) ; the part of Bocheongchun watershed. Predicted streamflows resulting from two years(95 and 96) daily data were compared with those observed at the watershed outlet. The results of temporal variation and spatial distribution of soil moisture are also presented by using GRASS.

  • PDF

A Study on Determination of an Optimum Riparian Buffer Zone Based on Analytical Hierarchy Process (계층분석법을 이용한 적정 수변구역 결정에 관한 연구)

  • Han, Haejin;Park, Seok-Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.555-562
    • /
    • 2004
  • This paper presents the development and application of a riparian buffer zone design model(RBZDM). The model was developed as a decision-making tool for watershed management, by integrating geographic information system(GIS) and analytical hierarchy process(AHP) theory. Several factors for watershed management, such as pollution removal capacity, land aquisition cost, distribution of point and non-point pollution sources, and possibility of new pollution source location, were analyzed based on AHP theory. The vegetated buffer zone width was designed using GIS-based riparian buffer analysis. The developed model was applied to the Kyoungan Stream watershed, which is an important part of Paldang lake catchment area. The Kyoungan stream watershed was divided into sixteen subbasins. Six of them belong to the main stem, where the model was applied. Ten alternatives of buffer zone width and five hierarchial levels were designed. The relative importance and the relative preference were computed by pair-wise comparison of evaluation criteria given in hierarchial levels. The buffer zone width was determined by linear function of the given alternatives and relative preferences. From this study, it was determined that the six buffer zone widths of Kyoungan main stems would be 1,594, 1,744, 1,856, 1,782, 1,338, 1,780 meter, from upstream to downstream.