• Title/Summary/Keyword: watershed health

Search Result 109, Processing Time 0.026 seconds

Chemical Water Quality and Fish Component Analyses in the Periods of Before- and After-the Weir Constructions in Yeongsan River

  • Kwak, Sang Do;Choi, Ji-Woong;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.39 no.1
    • /
    • pp.99-110
    • /
    • 2016
  • The objective of this study was to analyze chemical water quality, ecological characteristics of fish compositions, and ecosystem health before- (Bwc; 2008-2009) and after-the weir construction (Awc; 2011-2012) at Juksan Weir and Seungchon Weir of Yeongsan River watershed. Suspended solids (SS) and chlorophyll-a (Chl-a) in Juksan Weir increased, whereas nutrients such as total nitrogen (TN) and total phosphorus (TP) decreased in the epilimnetic water. In Juksan and Seungchon weirs, fish species distribution analysis in the periods of Bwc and Awc showed that sensitive species were rare and tolerant species were dominant in the community. In the analysis of trophic guild, relative abundance of carnivore species are increased to 22% and 12%, respectively, after the constructions of Seungchon Weir and Juksan Weir. Mann-Whitney U-tests of nonparametric statistical analysis indicated that omnivore and carnivore species had significant differences (p < 0.05) between the Bwc and Awc. The massive population growth of an exotic species, Micropterus salmoides, was evident in Seungchon Weir to influence on the structures of fish communities. The model values of mean Index of Biological Integrity (IBI), based on fish assemblages, were < 15, which indicates "poor" condition in the river health, and the significant difference of IBI values was not found between the Bwc and Awc.

Biological Water Quality Assessments Using Fish Assemblage in Nakdong River Watershed (어류를 이용한 낙동강 수계의 생물학적 수질 평가)

  • Choi, Ji-Woong;Lee, Eui-Haeng;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.254-263
    • /
    • 2007
  • The objective of this study was to evaluate biological water quality using fish assemblages in Nakdong River watershed. We selected 6 sites along the main axis of the river and evaluated the Index of Biological Integrity (IBI), Qualitative Habitat Evaluation Index (QHEI) and chemical water quality during July 2004${\sim}$March 2006. For the study, we applied the 10 metric IBI model, which was developed for national biological water quality criteria. Nakdong River's IBI value averaged 20.8 (n=14) during the study which means poor biological water quality. Physical habitat health at all sites, based on QHEI model, was measured as 110, indicating fair${\sim}$good condition. The habitat health varied depending on the locations sampled. Habitat health in sites 1 and 6 was judged as good, while the health in sites 3 and 4 was $poor{\sim}fair$. Especially, we found the metric values of $M1{\sim}M5$, M7, M10 were low in sites 3 and 4 compared to other sites. In these sites, thus, habitat restoration of substrate composition, riffles, and bank vegetation may be necessary. In the mean time, chemical water quality, based on BOD, COD, TSS, and nutrients, had no large spatial and temporal variations. Overall data analysis indicated that site 3 was largely impacted by the polluted-tributary, Keumho River and the downstreams showed better water quality due to the dilution of the polluted river water by Nam River and Hwang River.

A Study of Fish Community on Up and Downstream of Hwabuk Dam Under Construction in the Upper Wie Stream. (위천 상류에 건설 중인 화북댐 상 하류 어류군집에 관한 연구)

  • Seo, Jin-Won;Kim, Hee-Sung
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.260-269
    • /
    • 2009
  • Hwabuk Dam has been under construction to reduce flood damage in Nakdong River watershed and to supply stable water for middle area of Gyeongbuk Province. Therefore, fish investigation in up and downstream of the dam was conducted from 2004 to 2008 in order to determine any negative effect on fish community due to dam construction and to use as fundamental data for conserving species diversity and maintaining stream health. According to data analysis on water quality, temperature, dissolved oxygen, pH, suspended solids, and total E-coli had seasonal variation, but they did not significantly differ in sites. However, biological and chemical oxygen demand, chlorophyll-a, nitrogen, and phosphorus representing organic matter and nutrient concentration were higher in upper site and decreased to lower site so that they differed by site. Concentration of arsenic among the heavy metals was less than 0.05 mg $L^{-1}$, which is regulated for protection of human health in water quality standard, except for 0.092 mg $L^{-1}$ in June 2005. During the study period, the total number of fish caught from the 6 sites was 10,263 representing 7 families 19 species. Among them, dominant and subdominant species were Korean chub (Zacco koreanus, 62.5%) and Chinese minnow (Rhynchocypris oxycephalus, 10.6%) which inhabit mostly in mid and upper streams, Korea. Among the 19 species, Korean endemic species were 9 species (47.4%) including Korean slender gudgeon (Squalidus gracilis majimae), Korean dark sleeper (Odontobutis platycephala), and Korean shiner (Coreoleuciscus splendidus). There was several individuals of the $1^{st}$-class endangered species, Naktong nose loach (Koreocobitis nahtongensis), caught in 2005${\sim}$2007, and no introduced species of fish was found in entire sampling period. According to result of community analysis, dominance index decreased toward lower site, but diversity and richness indices increased toward lower site. The equation of length-weight relationship on the dominant species was TW=0.000003$(TL)^{3.2603}$. The parameter b in the equation was greater than 3.0 indicating good nutritional condition in the populations. Compared to populations of Korean chub in other streams, the population in Hwabuk Dam watershed had higher mean of condition factor by size indicating better growth rate. With fish fauna and multi-metric health assessment model in each sampling attempt, index of biotic integrity (IBI) was evaluated and it resulted mostly in good (26${\sim}$35) and excellent (36${\sim}$40) condition in all sites, and the mean of IBI was the highest in site 5. The results indicate that it is very important to study not only environmental impact assessment with fish composition but also stream health assessment in order to conserve healthy aquatic ecosystem.

Analysing the effect of impervious cover management techniques on the reduction of runoff and pollutant loads (불투수면 저감기법의 유출량 및 오염부하량 저감 효과 분석)

  • Park, Hyung Seok;Choi, Hwan Gyu;Chung, Se Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.1
    • /
    • pp.16-34
    • /
    • 2015
  • Impervious covers(IC) are artificial structures, such as driveways, sidewalks, building's roofs, and parking lots, through which water cannot infiltrate into the soil. IC is an environmental concern because the pavement materials seal the soil surface, decreasing rainwater infiltration and natural groundwater recharge, and consequently disturb the hydrological cycle in a watershed. Increase of IC in a watershed can cause more frequent flooding, higher flood peaks, groundwater drawdown, dry river, and decline of water quality and ecosystem health. There has been an increased public interest in the institutional adoption of LID(Low Impact Development) and GI(Green Infrastructure) techniques to address the adverse impact of IC. The objectives of this study were to construct the modeling site for a samll urban watershed with the Storm Water Management Model(SWMM), and to evaluate the effect of various LID techniques on the control of rainfall runoff processes and non-point pollutant load. The model was calibrated and validated using the field data collected during two flood events on July 17 and August 11, 2009, respectively, and applied to a complex area, where is consist of apartments, school, roads, park, etc. The LID techniques applied to the impervious area were decentralized rainwater management measures such as pervious cover and green roof. The results showed that the increase of perviousness land cover through LID applications decreases the runoff volume and pollutants loading during flood events. In particular, applications of pervious pavement for parking lots and sidewalk, green roof, and their combinations reduced the total volume of runoff by 15~61 % and non-point pollutant loads by TSS 22~72 %, BOD 23~71 %, COD 22~71 %, TN 15~79 %, TP 9~64 % in the study site.

Application of InVest-Habitat Quality Model for Assessing Watershed Health (유역 건전성평가를 위한 InVest-Habitat quality 모형의 적용)

  • Lee, Jiwan;Park, Jongyoon;Woo, Soyoung;Lee, Younggwan;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.451-451
    • /
    • 2021
  • 인간활동으로 인해 서식처의 변화, 서식처의 파편화를 비롯하여 기후변화, 토지이용의 변화 등으로 생태계 생물 다양성은 빠르게 손실되고있는 상황이다. 특히 생물 다양성은 생태계 복원력에 중요한 인자로서 유역의 건전성 회복을 위해 생물 다양성을 중요한 인자로 고려하려는 경향이 커지고 있다. 유역 건전성은 주로 큰 하천에서의 친수성, 서식처, 유량 및 수질 등에 적용되어왔고 국내에서는 최근 들어 유역 건전성을 확보하기 위해 수량 및 수질관리, 환경문제 등의 해결을 위해 유역관리 차원에서 접근하려는 시도가 시작되었으나 어떠한 수단을 통해 생물다양성과 서식처 관리를 접근할 수 있는지에 대한 연구는 아직 부족한 실정이다. 이에 본 연구에서는 최근 20년 동안 도시화, 댐 건설 등 토지이용변화가 크게 발생한 금강유역(9,865 km2)을 대상으로 InVest 모델 중 서식처 가치평가 모델 (Habitat Quality Model)을 이용하여 유역의 서식처 가치를 평가하고 이를 수생태계 건강성 모니터링 자료와 비교하여 모형의 적용성을 평가하고자 한다.

  • PDF

Estimation of Pollution Contribution TMDL Unit Watershed in Han-River according to hydrological characteristic using Flow Duration Curve (유량지속곡선을 이용한 수문특성별 한강수계 총량관리 단위유역의 오염기여도 추정)

  • Kim, Dong Young;Yoon, Chun Gyeong;Rhee, Han Pil;Choi, Jae Ho;Hwang, Ha Sun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.497-509
    • /
    • 2019
  • After the Total Maximum Daily Loads(TMDLs) was applied, it became beyond the limit of concentration management. However, it does not adequately reflect the characteristics of various watersheds, and causes problems with local governments because of the standard flow set. Thus, in this study, the Han River system is organized into four groups in estimating the Pollution Contribution by applying the Flow Duration Curve(FDC) created by the daily flow of data from the HSPF. And the method of this study is expected to be valuable as basic data for the TMDLs. As a result, Group I contains the main watersheds with no large hydraulic structures and tributary watersheds. There is no specificity in the FDC and the Pollution Contribution is estimated as rainfall runoff. Group II contains watersheds near the city where the FDC is maintained above a certain level during the Low Flow Conditions and the Pollution Contribution is estimated as the discharge flow of large scale point pollution facilities. Group III contains the main watersheds in which the large hydraulic structures are installed and FDC is curved in the Low Flow Conditions. So the Pollution Contribution is estimated as the water quality of the large hydraulic structures. Group IV contains the upstream in mainstream watersheds in which the large hydraulic structures are installed and the FDC is disabled before the Low Flow Conditions. As the flow is concentrated in the High Flow Conditions, the non-point pollution sources are estimated as the Pollution Contribution.

Evaluation of Runoff and Pollutant Loads using L-THIA 2012 Runoff and Pollutant Auto-calibration Module and Ranking of Pollutant Loads Potential (L-THIA 2012 유출 및 수질 자동 보정 모듈을 이용한 유출/비점부하량 산정 및 비점오염 부하량 포텐셜 등급화)

  • Jang, Chunhwa;Kum, Donghyuk;Ha, Junsoo;Kim, Kyoung-Soon;Kang, Dong Han;Kim, Keuk-Tai;Shin, Dong Suk;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.184-195
    • /
    • 2013
  • Urbanization from agricultural/forest areas has been causing increased runoff and pollutant loads from it. Thus, numerous models have been developed to estimate NPS loading from urban area and Long-Term Hydrologic Impact Analysis (L-THIA) model has been used to evaluate effects of landuse changes on runoff and pollutant loads. However, the L-THIA model could not consider rainfall intensity in runoff evaluation. Therefore, the L-THIA model, capable of simulating runoff using 10-minute rainfall data, was applied to the study areas for evaluation of estimated runoff and NPS. The estimated Nash-Sutcliffe coefficient (NSE) values were over 0.6 for runoff, BOD, TN, and TP for most sites and watershed. The calibrated model was further extended to other counties for pollutant load potential evaluation. Pollutant load potential maps were developed and target areas were identified. As shown in this study, the L-THIA 2012 can be used for evaluation runoff and pollutant loads with limited data sets and its estimation could be used in identifying pollutant load hot spot areas for implementation of site-specific Best Management Practices.

Evaluation of Tinda Gourd (Praecitrullus fistulosu) Germplasm's Yield

  • RAHEEL, Asfand;KHAN, Nasir Ahmad;BABAR, Raheel;ULLAH, Muhammad Arshad;ZAFFAR, Ali;IQBAL, Maouz;ASHRAF, Usman
    • The Korean Journal of Food & Health Convergence
    • /
    • v.5 no.3
    • /
    • pp.1-5
    • /
    • 2019
  • The field experiment was conducted in vegetable area, Institute of Horticultural Sciences in University of Agriculture, Faisalabad in order to recognize morphological and fruit growth pattern and yield of Tinda (Praecitrullus fistulosus) gourd germplasm lines. Sixteen germplasm lines in which one line is used as check are included were sown and grown on flat beds in field. The field experiment was arranged as randomized complete block design (RCBD) with three replications. Data on days to maturity, fruit per vine, fruit weight in grams, fruit diameter and total yield obtained were recorded. The fruit texture is marked as phenotype parameter. All parameters were collected and then analyzed statistically. All lines and replications showed different results among each other according to parameter. The maximum DTM (days to maturity), F/P (fruit per plant), FW (fruit weight), FD (fruit diameter) and Yield were recorded was $L_0$ (68.66), $L_3$ (1.66), $L_{10}$ (248.33), $L_{13}$ (8.50) and $L_0$ (599.33) and the minimum were recorded was $L_1$ (56), $L_{11}$ (0.33), $L_0$ (198), $L_9$ (7) and $L_4$ (421) grams respectively. All lines showed smooth texture of fruits with no hairs when mature at harvesting stage.

Ecological Health Assessments on Stream Order in Southern Han River Watershed and Physical Habitat Assessments (남한강 수계에서 하천차수에 따른 생태건강도 평가 및 지점별 물리적 서식지 평가)

  • Choi, Ji-Woong;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.440-447
    • /
    • 2013
  • The ecological health, based on the Index of Biological Integrity (IBI) and Qualitative Habitat Evaluation Index (QHEI) was evaluated in 10 stream sites of Southern Han River. Eleven parameters of 12 parameters (Karr 1981) were modified for the application of regional Korean circumstance. The ecological health, based on IBI grade, was in "good condition" and the IBI score ranged from 33 to 47. Nine parameters of the original 12-parameter metrics in QHEI model (Plafkin et al. 1989) were applied in the habitat assessment. The mean QHEI model values were judged as "partially supporting" and ranged from 75 (non-supporting) to 109 (supporting). Comparative analyses revealed that values of IBI and QHEI models were greater in Gj stream than Ig- and Dn streams. The analysis of fish compositions showed that the proportions of insectivore, omnivore, and carnivore were 61.9%, 19%, and 9.5%, respectively. According to tolerance guild analysis, sensitive species and tolerant species were 76.1% and 4.7%, respectively, indicating a healthy trophic state in terms of food chain. The analysis by habitat guild type indicated that riffle benthic species dominated (57.1%) when compared to water column species (28.5%). The introduced species and individuals with diseases or external abnormality were not observed. Overall, the model values of IBI and QHEI suggested that the ecological health was maintained well in this upstream region.

Assessment of climate change impact on aquatic ecology health indices in Han river basin using SWAT and random forest (SWAT 및 random forest를 이용한 기후변화에 따른 한강유역의 수생태계 건강성 지수 영향 평가)

  • Woo, So Young;Jung, Chung Gil;Kim, Jin Uk;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.863-874
    • /
    • 2018
  • The purpose of this study is to evaluate the future climate change impact on stream aquatic ecology health of Han River watershed ($34,148km^2$) using SWAT (Soil and Water Assessment Tool) and random forest. The 8 years (2008~2015) spring (April to June) Aquatic ecology Health Indices (AHI) such as Trophic Diatom Index (TDI), Benthic Macroinvertebrate Index (BMI) and Fish Assessment Index (FAI) scored (0~100) and graded (A~E) by NIER (National Institute of Environmental Research) were used. The 8 years NIER indices with the water quality (T-N, $NH_4$, $NO_3$, T-P, $PO_4$) showed that the deviation of AHI score is large when the concentration of water quality is low, and AHI score had negative correlation when the concentration is high. By using random forest, one of the Machine Learning techniques for classification analysis, the classification results for the 3 indices grade showed that all of precision, recall, and f1-score were above 0.81. The future SWAT hydrology and water quality results under HadGEM3-RA RCP 4.5 and 8.5 scenarios of Korea Meteorological Administration (KMA) showed that the future nitrogen-related water quality in watershed average increased up to 43.2% by the baseflow increase effect and the phosphorus-related water quality decreased up to 18.9% by the surface runoff decrease effect. The future FAI and BMI showed a little better Index grade while the future TDI showed a little worse index grade. We can infer that the future TDI is more sensitive to nitrogen-related water quality and the future FAI and BMI are responded to phosphorus-related water quality.