• Title/Summary/Keyword: watershed health

Search Result 109, Processing Time 0.025 seconds

Performance Characteristics and Improvement Suggestion of Individual Sewage Treatment in Kyangan Watershed (경안천 유역 소규모 오수처리시설의 처리특성 및 효율개선방안)

  • Jang, Young-ho;Kim, Keug Tae;Jahng, Deok-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.816-821
    • /
    • 2010
  • It has been achieved 109.1 kg/d of BOD reduction that is equivalent to the amount of BOD loading discharged from 21,880 persons and dramatic decrease of the fallout ratio against water quality of effluent, from 42% to 9%, through technical support on ISTPs to be applied by the ISMSGA at the upper area of Geongan river in Yong-In city. It was clearly revealed that the most efficient configuration for ISTP was a series of anaerobic tank, equalization basin, aerobic tank, sedimentation tank, and then effluent tank. Also, the major causes on the fallout ratio of ISTP resulted in the lack of management (67.5%) and imperfect facilities (32.5%). Then, when compared the quantity of water supply with the design capacity of ISTP, the design capacity was estimated as 1.8 or 2.4 folds larger than the real quantity of water supply so that it is essential to punctually consider the key factors such as an estimation methods, the specificity of commission operator and construction by high systematic technologies to improve the water quality for the future.

Analysis of Sediment Nutrients as Potential Sources of the Lake Water Quality (퇴적물 토양의 영양염류가 호소 수질에 미치는 잠재 요인 분석)

  • Jung, Joon-Oh;Kim, Young-Woo
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.5
    • /
    • pp.376-385
    • /
    • 2009
  • The characteristics of Lake Cheonhoji water and sediment were investigated in oder to utilize these as fundamental materials for the management of lake water quality. The hydrographic properties of Lake Cheonhoji which are relatively low chance of nutrients loading from the watershed and a long retention time of lake water, lead to the probability of high lake productivity. It was also observed that lake water showed stratification during summer and complete mixing during fall, even though water depth was relatively shallow. The trophic state was eutrophic to hypertrophic from summer to late fall. The overall properties of the sediment were oligohumic, high ignition loss and high composition of NAIP and Resid.-P, which might serve as potential pollution sources of lake water quality. In laboratory scale experiments, it was observed that leaching potential of nutrients in the sediment was greatly dependant upon water temperature and dissolved oxygen. Finally, water pollution in Lake Cheonhoji was considered to be largely due to the adverse cycle of uncontrollable eutrophication, which resulted in the subsequent occurrence of dead algae and animal plankton, organic sedimentation, reduction of dissolved oxygen and nutrients leaching, which again reinforced the cycle of eutrophication in the lake.

Effect of Untreated Water Flow Rate at Certain Temperature on the Discharge of Treated Water

  • Ullah, Muhammad Arshad;Aslam, Muhammad;Babar, Raheel
    • The Korean Journal of Food & Health Convergence
    • /
    • v.5 no.6
    • /
    • pp.5-9
    • /
    • 2019
  • Desalination requires large energy. This experiment deals to desalinate brackish water through solar panels. The discharge from desalination plants is almost entirely water, and .01 percent is salt. Desalination is a process that extracts minerals from saline water. Solar-powered desalination technologies can be used to treat non-traditional water sources to increase water supplies in rural, arid areas. Water scarceness is a rising dilemma for large regions of the world. Access to safe, fresh and pure clean drinking water is one of the most important and prime troubles in different parts of the world. Among many of water cleansing technologies solar desalination/distillation/purification is one of the most sustainable and striking method engaged to congregate the supply of clean and pure drinkable water in remote areas at a very sound cost. Six types of dripper having discharge 3 - 8 lh-1 were installed one by one and measured discharge and volume of clean water indicated that at 6 lh-1 untreated water discharge have maximum evaporation and volume of clean water was 19.2 lh-1 at same temperature and radiations. Now strategy was developed that when increased the temperature the intake discharge of untreated water must be increased and salt drained water two times more than treated water.

Evaluation of Environmental Toxicities for Priority Water Pollutants in a Small Watershed by Bioassays - Comparision between Lettuce Seed Germination Test and Microtox Bioassay - (생물학적 검정법을 이용한 소규모 수계내 수질 오염물질의 환경독성 평가 -상추씨 발아시험과 Microtox 시험 비교-)

  • 이지나;황인영
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.4
    • /
    • pp.135-144
    • /
    • 1999
  • Environmental toxicities of priority water pollutants were evaluated by two selected bioassays, Lettuce seed germination/elongation test and Microtox acute toxicity test. Toxic chemicals (heavy metals, polycyclic aromatic hydrocarbons, and phenolic compounds) inhibited the germination rate and root elongation of Lettuce seed, as well as the bioluminescence of Microtox bacteria. When test biota were exposed to target chemicals, the sensitivity of Lettuce bioassay was relatively lower than that of Microtox bioassay. However, Lettuce bioassay may be a good candidate for prescreening the environmental toxicities of priority water pollutants, since the testing method with Lettuce seed was relatively easier and more economic than with Microtox bacteria. Toxicity tests were conducted to compare the validity and sensitivity of both bioassays for sediment from a small stream passed through urban area as well as leachate from a municipal solid waste landfill. From experimental results, we found that Lettuce test and Microtox test are compensated each other as a battery of bioassay for evaluating the environmental toxicities of field samples obtained from a small stream contaminated by pollutants.

  • PDF

A Study on the Designation of Nonpoint Pollution Management Region (비점오염원 관리지역 도출에 관한 연구)

  • Choi, Ji Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.434-439
    • /
    • 2007
  • Amended Water Quality Environment Preservation Law enacted that the areas where nonpoint pollution is serious can be designated as Nonpoint Source Management Region. According to Section 54 of Water Quality Environment Preservation Law, corresponding watersheds are areas where runoff from nonpoint pollution source may deteriorate river and lake water quality, residents' health and property, and ecosystem. The criteria are as followings; i) where nonpoint source contribution result in or will result in significant ecological destruction, iii) national or local industrial complexes and cities having population greater than one million where nonpoint source managements are necessary, iv) where specific measurement is necessary because of its geological and stratigraphic characteristics. In this research, detailed designation criteria was developed reflecting current nonpoint source management situation and its discharge characteristics. Depending on the result, target regions were also suggested. In additions, it will be desirable that the target regions are prioritized considering institutional execution availability, stakeholder's agreement, and connection with existing nonpoint source pollution management measures.

Ecosystem Health Assessments of Changwon Stream as a Preliminary Diagnosis for Aquatic Ecosystem Restoration

  • Han, Jung-Ho;Bae, Dae-Yeul;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.4
    • /
    • pp.527-536
    • /
    • 2007
  • In this study, we applied 10-metric health assessment model, based on the Index of Biological Integrity (IBI) during 2006 in the Changwon Stream, which is located in the Changwon city, Gyeongnam province, S. Korea, and then compared with water quality data. The Index of Biological Integrity (IBI) in the Changwon Stream varied from 18 to 38 in the watershed depending on the sampling location and averaged 30.3 (n=6) during the study. Analysis of tolerance guilds showed that the proportion of sensitive species was 13%, but tolerant and intermediate species were 34% and 53%, respectively. Qualitative Habitat Evaluation Index (QHEI) averaged 43.3 (range: 65-104, n=6) indicating non-supporting condition, based on the criteria of U.S. EPA (1993). Values of QHEI showed a typical longitudinal decreases from the headwater reach to the downstream location, except for Site 1 with a low QHEI value by artificial habitat by concrete construction. Minimum QHEI was found in Site 4 where fish diversity was minimal. Conductivity increased continuously along the gradients and especially showed abrupt increases in the downstream sites along with turbidity. Stream ecosystem health of IBI matched to the values of QHEI except for S6. Low IBI values in the sites 4 and 5 was considered to be a result of combined effects of chemical pollutions and habitat degradations. Our results support the hypotheses of Plafkin et ai. (1989) that physical habitat quality directly influences the trophic structure and species richness, and is closely associated with IBI values.

Analysis of Spatial Changes in the Forest Landscape of the Upper Reaches of Guem River Dam Basin according to Land Cover Change (토지피복변화에 따른 금강 상류 댐 유역 산림 경관의 구조적 변화 분석)

  • Kyeong-Tae Kim;Hyun-Jung Lee;Whee-Moon Kim;Won-Kyong Song
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.4
    • /
    • pp.289-301
    • /
    • 2023
  • Forests within watersheds are essential in maintaining ecosystems and are the central infrastructure for constructing an ecological network system. However, due to indiscriminate development projects carried out over past decades, forest fragmentation and land use changes have accelerated, and their original functions have been lost. Since a forest's structural pattern directly impacts ecological processes and functions in understanding forest ecosystems, identifying and analyzing change patterns is essential. Therefore, this study analyzed structural changes in the forest landscape according to the time-series land cover changes using the FRAGSTATS model for the dam watershed of the Geum River upstream. Land cover changes in the dam watershed of the Geum River upstream through land cover change detection showed an increase of 33.12 square kilometers (0.62%) of forests and 67.26 square kilometers (1.26%) of urbanized dry areas and a decrease of 148.25 square kilometers (2.79%) in agricultural areas from the 1980s to the 2010s. The results of no-sampling forest landscape analysis within the watershed indicated landscape percentage (PLAND), area-weighted proximity index (CONTIG_AM), average central area (CORE_MN), and adjacency index (PLADJ) increased, and the number of patches (NP), landscape shape index (LSI), and cohesion index (COHESION) decreased. Identification of structural change patterns through a moving window analysis showed the forest landscape in Sangju City, Gyeongsangbuk Province, Boeun County in Chungcheongbuk Province, and Jinan Province in Jeollabuk Province was relatively well preserved, but fragmentation was ongoing at the border between Okcheon County in Chungcheongbuk Province, Yeongdong and Geumsan Counties in Chungcheongnam Province, and the forest landscape in areas adjacent to Muju and Jangsu Counties in Jeollabuk Province. The results indicate that it is necessary to establish afforestation projects for fragmented areas when preparing a future regional forest management strategy. This study derived areas where fragmentation of forest landscapes is expected and the results may be used as basic data for assessing the health of watershed forests and establishing management plans.

Physico-chemical Characteristics and In situ Fish Enclosure Bioassays on Wastewater Outflow in Abandoned Mine Watershed (폐광산 지역의 유출수에 대한 이.화학적 수질특성 및 Enclosure 어류 노출시험 평가)

  • An, Kwang-Guk;Bae, Dae-Yeul;Han, Jeong-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.218-231
    • /
    • 2012
  • The objectives of this study were to evaluate the physico-chemical water quality, trophic and tolerance guilds in the control ($C_o$) and impacted streams of the abandoned mine, along with the ecological health, using a multimetric health model and physical habitat conditions of Qualitative Habitat Evaluation Index (QHEI), during the period of three years, 2005~2007. Also, eco-toxicity ($EE_t$) enclosure tests were conducted to examine the toxic effects on the outflows from the mine wastewater, using the sentinel species of Rhynchocypris oxycephalus, and we compared the biological responses of the control ($C_o$) and treatment (T) to the effluents through a Necropybased Health Assessment Index ($N_b$-HAI). Tissue impact analysis of the spleen, kidney, gill, liver, eyes, and fins were conducted in the controlled enclosure experiments (10 individuals). According to the comparisons of the control ($C_o$) vs. the treatment (T) in physicochemical water quality, outflows from the abandoned mine resulted in low pH of 3.2, strong acid wastewater, high ionic concentrations, based on an electrical conductivity, and high total dissolved solid (TDS). Physical habitat assessments, based on Qualitative Habitat Evaluation Index (QHEI) did not show any statistical differences (p>0.05) in the sampling sites, whereas, the $M_m$-EH model values in a multimetric ecological health ($M_m$-EH) model of the Index of Biological Integrity (IBI), using fish assemblages, were 16~20 (fair condition) in the control and all zero (0, poor condition) in the impacted sites of mine wastewater. In addition, in enclosure eco-toxicity ($EE_t$) tests, the model values of $N_b$-HAI ranged between 0 and 3 in the controls during the three years, indicating an excellent~good condition (Ex~G), and were >100 (range: 100~137) in the impacted sites, which indicates a poor condition (P). Under the circumstances, organ tissues, such as the liver, kidney, and gills were largely impaired, so that efficient water quality managements are required in the outflow area of the abandoned mine watershed.

Distributions of Endangered Fish Species and Their Relations to Chemical Water Quality-Ecological Stream Health in Geum-River Watershed (금강 대권역 대표 멸종위기 담수어류의 분포 특성 및 이화학적 수질-하천 생태건강도와의 관계분석)

  • Lee, Sang-Jae;An, Kwang Guk
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.6
    • /
    • pp.986-995
    • /
    • 2016
  • The objective of this study was to analyze the distribution of endangered fish species and elucidate their relations on chemical water quality, physical habitat conditions and ecological stream health. The dominant species in the watershed was Pseudopungtungia nigra (Pn), Gobiobotia macrocephala (Gm), Gobiobotia brevibarba (Gb), Liobagrus obesus (Lo), and Iksookimia choii (Ic) in the order. The species of Pn designated as "critical endangered species (I) (CER)", was most widely distributed species among the endangered species, so the designation of the species should be re-evaluated. The endangered species was most popular (4 species, 384 individuals) in the Cho-River region of eighteen lotic regions. According to the analysis of chemical tolerance limits in the habitats with endangered fish species, biological oxygen demand (BOD) and total phosphorus (TP) was analyzed as "very good" (Ia) and "good condition" in the chemical criteria of the Ministry of Environment, Korea. Also, chemical conditions, based on ammonia-N ($NH_{4+}$), total nitrogen (TN), phosphate-P ($PO_{4^-}P$) were much better in the habitat with endangered species (Hw) than the habitat without endangered species (Ho). In the meantime, the species of Ic showed wide ranges on the chemical tolerance, so physical habitat conditions, such as the size of substrate particles (sand) and hydrological regime, were considered as more important factors than the chemical water quality, if the water quality is not largely degraded. The endangered species were also more distributed in the high-order (4-6) streams than the low-order (1-3) streams. The evaluation of ecological stream health, based on multi-metric model of the Index of Biological Integrity (IBI), showed the large difference between the Hw (21.6, fair condition)and Ho (30.5, good condition), indicating that the habitat maintained well chemically and physically had higher distributions of endangered species. Overall, the designation of CER on the Pn should be re-evaluated due to wide-distributions, and the protections from water pollution and the habitat conservations on the endangered species are necessary in the watershed.

Preliminary Ecological Assessments of Water Chemistry, Trophic Compositions, and the Ecosystem Health on Massive Constructions of Three Weirs in Geum-River Watershed

  • Ko, Dae-Geun;Choi, Ji-Woong;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.39 no.1
    • /
    • pp.61-70
    • /
    • 2016
  • Major objectives of the study were to analyze chemical and biological influences of the river ecosystem on the artificial weir construction at three regions of Sejong-Weir (Sj-W), Gongju-Weir (Gj-W), and Baekje-Weir (Bj-W) during 2008-2012. After the weir construction, the discharge volume increased up to 2.9 times, and biological oxygen demand (BOD) and electrical conductivity (EC) significantly decreased (p < 0.05). Also, the decrease of total phosphorus (TP) was also evident after the weir construction, but still hyper-eutrophic conditions, based on criteria by , were maintained. Multi-metric model of Index of Biological Integrity (IBI) showed that IBI values averaged 21.0 (range: 20-22; fair condition) in the Bwc, and 14.3 (range: 12-18; poor condition) in the Awc. The model values of IBI in Sj-W and Gj-W were significantly decreased after the weir construction. The model of Self-Organizing Map (SOM) showed that two groups (cluster I and cluster II) of Bwc and Awc were divided in the analysis based on the clustering map trained by the SOM. Principal Component Analysis (PCA) was similar to the results of the SOM analysis. Taken together, this research suggests that the weir construction on the river modified the discharge volume and the physical habitat structures along with distinct changes of some chemical water quality. These physical and chemical factors influenced the ecosystem health, measured as a model value of IBI.