• Title/Summary/Keyword: watershed characteristic

Search Result 120, Processing Time 0.021 seconds

Development and Evaluation of Sediment Delivery Ratio Equation using Clustering Methods for Estimation of Sediment Discharge on Ungauged Basins in Korea (국내 미계측 유역의 유사유출량 예측을 위한 군집별 유사전달율 산정식 도출 및 평가)

  • Lee, Seoro;Park, Sang Deog;Shin, Seung Sook;Kim, Ki-sung;Kim, Jonggun;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.5
    • /
    • pp.537-547
    • /
    • 2018
  • Sediment discharge by rainfall runoff affects water quality in rivers such as turbid water, eutrophication. In order to solve various problems caused by soil loss, it is important to establish a sediment management plan for watersheds and rivers in advance. However, there is a lack of sediment data available for estimating sediment discharge in ungauged basins.. Thus, reasonable research is very important to evaluate and predict the sediment discharge quantitatively. In this study, cluster analysis was conducted to classify gauged watersheds into hydrologically homogeneous groups based on the watershed characteristics. Also, this study suggests a method to efficiently predict the sediment discharge for ungauged basins by developing and evaluating the SDR equations based on the PA-SDR module. As the result, the SDR equations for the classified watersheds were derived to predict the most reasonable sediment discharge of ungauged basins with 0.24 % ~ 10.89 % errors. It was found that the optimal parameters for the gauged basins reflect well characteristic of sediment movement. SDR equations proposed in this study will be available for estimating sediment discharge on ungauged basins. Also it is possible to utilize establishing the appropriate sediment management plan for integrated management of watershed and river in Korea.

The design of coffer dam utilized P.R.D. method (P.R.D. 공법을 활용한 가물막이 설계)

  • Park, Chal-Sook;Lee, Kyu-Tak;Yum, Kyung-Taek;Kim, Yoon-Ku;Kang, Bong-Gwon;Lee, Jae-Weon;Lim, Seok-San;Jeong, Ji-Yearl
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.869-887
    • /
    • 2008
  • Coffer dam for tunnel type spillway in inflow section of Dae-am dam was originally planned as 2 lines sheet piles with Water Zet method. But, the result of pilot test was caused of some problems that vibration during installation of pile could pollute water and water leakage could the lower part. So, sheet piles was not satisfactory for faculty of coffer dam. Structural instability of sheet pile system need to reinforcement. Characteristic of Dae-am dam was small reservoir capacity but wide drainage area, of which it was judgment that security of leakage and stability was difficult during excavation of inlet part. So, we consider that water curtain method utilized with in site pouring concrete pile method was designed at weir part of spillway. We were known about basement rock that geological boring was carried out in weir part. After taking a deep consideration, PRD method was accepted as a new method. Concrete pile by PRD was installed to below country rock. CJM method was carried out with PRD. After making concrete wall using Top-down method, earth anchors were installed for supporting it. According to the result of numerical analysis, as water level rises, wall is stable.

  • PDF

Soil Moisture Measurements and Correlation Analysis to Understand the Runoff Generation Process for a Bumrunsa Hillslope of Sulmachun Watershed (설마천 범륜사 사면 유출과정의 이해를 위한 실측토양수분 상관도 분석)

  • Kim, Sang-Hyun;Kang, Mi-Jeong;Kwak, Yong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.5
    • /
    • pp.351-362
    • /
    • 2011
  • The soil moisture measurements and correlation analysis are presented to improve understanding the hydrological process at the hillslope scale. The rainfall events is a main driver of soil moisture variation, and its stochastic characteristic need to be properly treated prior to the correlation analysis between soil moisture measurements. Using field measurements for two designated periods during the late summer and autumn seasons in 2007 obtained from the Bumrunsa hillslope located at the Sulmachun watershed, prewhitened correlation analysis were performed for 8, 14, 7 and 7 relationships representing the vertical, lateral, recharge and return flows, for two designated periods, respectively. The analysis indicated both temporal and spatial variation patterns of hydrological processes, which can be explained by the relative contribution of matrix and macropore flows and the impact of transect topography, respectively.

Characteristics of Spatial and Temporal Organic Matter in the Han River Watershed (한강수계 유기물의 시·공간적 분포 특성 비교)

  • Yu, Soonju;Cho, Hangsoo;Ryu, Ingu;Son, Juyeon;Park, Minji;Lee, Bomi
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.409-422
    • /
    • 2018
  • The purpose of this study is to find the characteristics of organic matters based on the distribution and oxidation rates, as noted according to the spatial and temporal variations from 2008 to 2016. Generally speaking, the Han River system is separated into one lower course and two upper courses which are the Namhan River and Bukhan River. The seasonal factor is one of the most important causes of water quality changing in both of the upper courses as a result of a few pollution sources. The concentration of organic matter was measured as higher in the lower course into which great streams with point and non-point sources were identified. According to seasonal variations, however, the change of the organic matter in the lower course is comparatively slighter than that of organic matters in the upper courses. The oxidation rates related to the BOD were 15 %, 17 % and 26 % in the Bukhan River, Namhan River and the lower course, respectively. These results could be explained that more biodegradable organic matter were seen to have existed in the lower courses comparing to the activity in the upper course. The oxidation rates of the BOD were noted as relatively higher in the eutrophicated places with phytoplankton. Therefore the BOD is one of the good index models to find the characteristic of the eutrophicated water. On the other hand BOD would not be enough to estimate concentration of refractory organic matters in the Bukhan and Namhan river. Consequently, both of the TOC and BOD are necessary indices to understand the identified refractory and/or biodegradable characteristics of organic matter.

Elasticity Analyses between Water Temperature and Water Quality considering Climate Change in Nak-dong River Basin (기후변화를 고려한 낙동강 유역의 수온과 수질 탄성도 분석)

  • Shon, Tae Seok;Lee, Kyu Yeol;Im, Tae Hyo;Shin, Hyun Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.830-840
    • /
    • 2011
  • Climate change has been settled as pending issues to consider water resources and environment all over the world, however, scientific and quantitative assessment methods of climate change have never been standardized. When South Korea headed toward water deficiency nation, the study is not only required analysis of atmospheric or hydrologic factors, but also demanded analysis of correlation with water quality environment factors to gain management policies about climate change. Therefore, this study explored appropriate monthly rainfall elasticity in chosen 41 unit watersheds in Nak-dong river which is the biggest river in Korea and applied monitored discharge data in 2004 to 2009 with monthly rainfall using Thiessen method. Each unit watershed drew elasticity between water temperature and water quality factors such as BOD, COD, SS, T-N, and T-P. Moreover, this study performed non-linear correlation analysis with monitored discharge data. Based on results of analysis, this is first steps of climate change analysis using long-term monitoring to develop basic data by Nak-dong river Environmental Research Center (Ministry of Environment) and to draw quantitative results for reliable forecasting. Secondary, the results considered characteristic of air temperature and rainfall in each unit watershed so that the study has significance its various statistical applications. Finally, this study stands for developing comparable data through "The 4 major river restoration" project by Korea government before and after which cause water quality and water environment changes.

Landslide risk zoning using support vector machine algorithm

  • Vahed Ghiasi;Nur Irfah Mohd Pauzi;Shahab Karimi;Mahyar Yousefi
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.267-284
    • /
    • 2023
  • Landslides are one of the most dangerous phenomena and natural disasters. Landslides cause many human and financial losses in most parts of the world, especially in mountainous areas. Due to the climatic conditions and topography, people in the northern and western regions of Iran live with the risk of landslides. One of the measures that can effectively reduce the possible risks of landslides and their crisis management is to identify potential areas prone to landslides through multi-criteria modeling approach. This research aims to model landslide potential area in the Oshvand watershed using a support vector machine algorithm. For this purpose, evidence maps of seven effective factors in the occurrence of landslides namely slope, slope direction, height, distance from the fault, the density of waterways, rainfall, and geology, were prepared. The maps were generated and weighted using the continuous fuzzification method and logistic functions, resulting values in zero and one range as weights. The weighted maps were then combined using the support vector machine algorithm. For the training and testing of the machine, 81 slippery ground points and 81 non-sliding points were used. Modeling procedure was done using four linear, polynomial, Gaussian, and sigmoid kernels. The efficiency of each model was compared using the area under the receiver operating characteristic curve; the root means square error, and the correlation coefficient . Finally, the landslide potential model that was obtained using Gaussian's kernel was selected as the best one for susceptibility of landslides in the Oshvand watershed.

A Study on the Improvement of Evaluation Indicators for Adjusting Forestland Classification (산지구분 조정을 위한 산지특성평가 지표 개선에 관한 연구)

  • KWAK, Doo-Ahn;RYU, Keun-Won;KWON, Soon-Duk;KIM, Won-Kyung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.1
    • /
    • pp.12-29
    • /
    • 2016
  • The purpose of this study was to improve forestland characteristic evaluation system's indicators for rational development and ecosystem conservation. There has been no consideration for statistical duplication between variables, and it caused inefficient data collection. Furthermore, the same evaluation criteria were applied for all forestlands without considering regionally different characteristics, and it made variation for designation cancel rates of preservation semi-preservation forestlands between cities. To solve these problems, we first removed 'DBH' variable which has a multicollinearity. Second, we applied standard normal distribution for each forest watershed type. As a result of eliminating 'DBH', the numbers of parcels for all grades except A were changed but their numbers and areas were not large enough to consider the change of total score. For the output of analyses with the existing same regional criteria, the total scores of urban type and urban-fringe type forestlands were higher than those of other types. The numbers of parcels for A and B were increased and those for C and E were decreased by applying standard normal distribution. This caused the increase of preservation-oriented parcels. Finally, we suggested a new evaluation method based on standard normal distribution to consider regional forest characteristics and to solve regional imbalance.

Studies on the Rainfall Characteristics in Chungnam Region(I) Probable Rainfall Intensity in Short Duration in Daejeon Area (충남지방(忠南地方)의 강우특성(降雨特性)에 관(關)한 연구(硏究)(I) 대전지역(大田地域)의 단시간(短時間) 확률강우강도(確率降雨强度))

  • Ahn, Byoung Gi
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.1
    • /
    • pp.82-89
    • /
    • 1981
  • The characteristic of rainfall intensity in short duration is very important to calculate short-term runoff in small watershed by Rational method. Therefore, the purpose of this study is to derive the most proper formula on the probable rainfall intensity in each return period in Daejeon area. And the results of this study could be utilized for the design of drainage-structures in small watershed, drainage system in urban area and flood control in small river basin. The result s of this study are summerized as follows. 1. Gumbel-Chow method which shows the mean value was chosen to calculate the probable rainfall in tensity in each return periods. 2. According to statistical judgement, probable rainfall intensity formula of Japanese type($I={\frac{a}{t+b}}$, see Table-6) shows the most proper one among other types of formula like Talbot type, Sherman type and Characteristic coefficient method. Probable rainfall in tensity value of Japanese type in Daejeon area shows well coincidence with the one obtained by applying prof. Park's n-coefficient to Monobe formula $I=({\frac{R_{24}}{24}})({\frac{T}{t}})^{0.5486}$. On the other hand, the value by Monobe formula with n-coefficient of 2/3 which is being used as a disign criterison by M. O. C. shows large difference from the fore-mentioned results (see Table-7). Consequently the value by Monobe formula might be judged that it is too much overestimated one as a design criterion. 3. Short-term runoff in small water shed could be calculated more reasonably in Daejeon area through this probable rainfall in tensity formula.

  • PDF

Suggestion of Synthetic Unit Hydrograph Method Considering Hydrodynamic Characteristic on the Basin (유역의 동수역학적 특성을 고려한 합성단위도 기법의 제시)

  • Kim, Joo Cheol;Choi, Yong Joon;Jeong, Dong Kug
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.47-55
    • /
    • 2011
  • This study suggests new synthetic unit hydrograph method considering hydrodynamic characteristic on the basin. The suggested method based on width function GIUH, and the procedure is summarized as follows; 1) Draw up a travel distance distribution map (width function) which is raster of length between from center of individual cells to the outlet by GIS. 2) Calculation of travel time distribution map (rescaled width function) by hydrodynamic parameters and travel distance distribution map. 3) Derivation of IUH and Duration UH from rescaled width function. 4) Comparison of shape of UH between suggested method and existing synthetic unit hydrograph methods. The target basins are selected Ipyeong and Tanbu subwatershed in the Bocheong Basin. The target basins are similar scale (watershed area), but different drainage structure (drainage density et al.). Therefore we anticipate that there are different hydrologic response functions because different hydrodynamic characteristics. As a result of derivation of UH, existing synthetic unit hydrograph methods are similar shape of UHs about Ipyeong and Tanbu watersheds, but the suggested method is different shape of ones. As a result of application to observed data, the peak discharge by suggested method is similar to existing synthetic unit hydrograph methods, but the peak time is well correspondence between those. Henceforth, if the suggested method combines with the rational velocity estimation method, it is useful method for synthetic of UH in ungauged watershed.

A Study on Hydrologic Clustering for Standard Watersheds of Korea Water Resources Unit Map Using Multivariate Statistical Analysis (다변량 통계분석기법을 이용한 전국 표준유역 대상 수문학적 군집화 연구)

  • Ahn, So-Ra;Kim, Sang-Ho;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.1
    • /
    • pp.91-106
    • /
    • 2014
  • This study tries to cluster the 795 standard watersheds of Korea Water Resources Unit Map using multivariate statistical analysis technique. The 30 factors of watershed characteristics related to topography, stream, meteorology, soil, land cover and hydrology were selected for comprehensive analysis. From the factor analysis, 16 representative factors were selected. The significant factors in order were the pedological feature, scale and geological location and meteorological and hydrological features of the watershed. As a next step, the 73 gauged watersheds were selected for cluster analysis. They are scattered properly to the whole country and the discharge data were within a confidential level. Based on the 73 watersheds, the other ungaged watersheds were clustered by applying the 16 factors and calculating Euclidian distances. The clustering results showed that the similarity between standard watersheds within the same river basin were 87%, 69%, 41%, 52%, and 27% for Han, Nakdong, Geum, Seomjin, and Yeongsan river basins respectively.