• Title/Summary/Keyword: waterproffing layer

Search Result 1, Processing Time 0.015 seconds

Stress Analysis in Waterproof Layer on Steel Bridge Deck Pavement Using Finite Element Analysis (유한요소해석을 이용한 교면포장의 방수층에서의 응력해석)

  • Woo, Young-Jin;Lee, Hyun-Jong;Park, Hee-Mun;Choi, Ji-Young
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.11-18
    • /
    • 2008
  • The behavior of pavement and waterproofing layer on the steel bridge deck system under traffic loading was analyzed using a finite element method in this paper. In the finite element analysis, the othotropic steel bridge deck is represented by equivalent plate using solid element instead of shell element and the interface is assumed perfect bonding state. The effects of several parameters such as thickness of deck, Young's modulus of deck, thickness of pavement, different braking loading, and temperature on the stresses and strain in the interface are investigated for bridge deck pavement. The shear stress of waterproof layer increases with decrease of bridge deck thickness and stiffness. The change of shear stress is negligible when the bridge deck thictaess is greater than 150mm and stiffness is greater than $2{\times}10^{5}MPa$. As the pavement thickness and temperature decrease, the shear stress in the waterproof layer tends to be increased. The tensile strain at the bottom asphalt layer decreases as the temperature and thickness increase.

  • PDF