Purpose: Our purpose in this study was to examine the strategies for the development of watermelon industry using unstructured big data analysis. That is, this study was to look the change of issues and consumer's perception about watermelon using big data and social network analysis and to investigate ways to strengthen the competitiveness of watermelon industry based on that. Methodology: For this purpose, the data was collected from Naver (blog, news) and Daum (blog, news) by TEXTOM 4.5 and the analysis period was set from 2015 to 2016 and from 2017-2018 and from 2019-2020 in order to understand change of issues and consumer's perception about watermelon or watermelon industry. For the data analysis, TEXTOM 4.5 was used to conduct key word frequency analysis, word cloud analysis and extraction of metrics data. UCINET 6.0 and NetDraw function of UCINET 6.0 were utilized to find the connection structure of words and to visualize the network relations, and to make a cluster of words. Results: The keywords related to the watermelon extracted such as 'the stalk end of a watermelon', 'E-mart', 'Haman', 'Gochang', and 'Lotte Mart' (news: 015-2016), 'apple watermelon', 'Haman', 'E-mart', 'Gochang', and' Mudeungsan watermelon' (news: 2017-2018), 'E-mart', 'apple watermelon', 'household', 'chobok', and 'donation' (news: 2019-2020), 'watermelon salad', 'taste', 'the heat', 'baby', and 'effect' (blog: 2015-2016), 'taste', 'watermelon juice', 'method', 'watermelon salad', and 'baby' (blog: 2017-2018), 'taste', 'effect', 'watermelon juice', 'method', and 'apple watermelon' (blog: 2019-2020) and the results from frequency and TF-IDF analysis presented. And in CONCOR analysis, appeared as four types, respectively. Conclusions: Based on the results, the authors discussed the strategies and policies for boosting the watermelon industry and limitations of this study and future research directions. The results of this study will help prioritize strategies and policies for boosting the consumption of the watermelon and contribute to improving the competitiveness of watermelon industry in Korea. Also, it is expected that this study will be used as a very important basis for agricultural big data studies to be conducted in the future and this study will offer watermelon producers and policy-makers practical points helpful in crafting tailor-made marketing strategies.