• Title/Summary/Keyword: watering

Search Result 189, Processing Time 0.025 seconds

Effect of Watering on Eluviation of Soluble Salts in the Vinyl House Soils (관수(灌水)에 의(依)한 비닐하우스내(內) 토양(土壤)의 제염(除鹽))

  • Jung, Yeong-Sang;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.2
    • /
    • pp.53-60
    • /
    • 1975
  • Vegetables are often cultivated continuously year round in a vinyl house with heavy application of fertlilizers, which leads to accumulation of salts in the soil. A field experiment was conducted to investigate the effect of watering on salt eluviation from the soil, and on the yield of tomatoes in the vinyl house. The results were summarized as the followings: The salt eluviation increased with the amount of water applied. The efficiency of the salt eluviation was greater for the silty clay loam soil than the sandy loam soil. With a given amount of water, the efficiency increased with frequency of watering. The yield of tomatoes was increased by watering. However, the yield was not necessarily correlated to the amount of salt leached. Increase in yield of tomatoes by watering was in order of the treatment, 100mm (50-50), 150mm (50-50-50 or 100-50), and 200mm (100-100) of water for both soils. Relationship between the yield of tomatoes and electrical conductibity of the soil (1 : 5 extract) was described by the following regression equation : $Y=1,739.0+437.5X-290.5X^2$ $(R=0.632^{**})$ for sandy loam soil, and $Y=1.542.2+454.1X-275.0X^2$ $(R=0.622^{**})$ for silty clay loam soil. The yield of tomatoes in salt accumulated soil was inversely correlated to extractable sodium and potassium, and to the ratio of extractable sodium to calcium (Na/Ca), while the yield was not correlated to extractable calcium and magnesium.

  • PDF

Studies on the Physico-Chemical Characteristics of Different Casing Materials Affecting Mycelial Growth and Yield of Cultivated Mushroom, Agaricus bisporus (Lange) Sing. (양송이의 균사생장(菌絲生長) 및 자실체(子寶體) 수량(收量)에 미치는 복토재료(覆土材料)의 이화학적(理化學的) 성질(性質)에 관(關)한 연구(硏究))

  • Kim, Dong-Soo
    • The Korean Journal of Mycology
    • /
    • v.3 no.1
    • /
    • pp.1-19
    • /
    • 1975
  • Since the importance of casing in fruit body formation of Agaricus bisporus has been emphasized, physico-chemical characteristics of casing materials were discussed by many workers and a mixture of peat and mineral soil as proper casing material has been adopted in many of mushroom growing countries. Because of limited resources of peat in Korea, it is necessary to find practical performance and substitutional materials for casing. The effect of casing on mycelial growth and mushroom yield of A. bisporus varied with materials, its combination and practices etc. The experiments to be discussed in this paper are concerned with pH and Ca of casing material which influence A bisporus, and changes of physico-chemical characteristics with mixing ratio of casing materials and its effect on A. bisporus. The optimum range of moisture content of each material, management of watering and application of physico-chemical characteristics casing materials was also investigated and re-use of weathered spent compost for casing material was described. 1. The effect of calcium on mycelial growth of A. bisporus at various pH in Halbschalentest showed different results with calcium sources. Best results were obtained around neutrality and fresh weight of fruit bodies grown in the range of pH 7 to 8 was highest among the tested levels. 2. Available moisture, pore space, organic matter, cation exchangeable capacity and exchangeable cation was increased by an increase of mixing ratio of peat in casing materials, while an adverse effect was obtained by addition of sand. 3. Mycelial growth on clay loam was more rapid at a lower bulk density of 0.75g/cc and at 20% moisture content on a dry weight basis at the same bulk density. 4. Mixing ratio of casing materials, 60 to 80 per cent by volume of peat mixed with 20 to 40 per cent of clay loam produced the highest yield of fresh fruit bodies and sand the lowest. However, per cent of open cap was highest in peat and lowest in sand. 5. Days required for fruit body initiation was shortened in mixtures of peat and clay loam by one to three days compared with other materials and the formation of flushes was clear. 6. The effect of some physico-chemical characteristics of casing materials on the fresh weight of fruit bodies were estimated by a multiple regression equation; Y=-923.86+$8.18X_1+8.04X_2+7.90X_3+0.12X_4+2.03X_5-0.82X_6-0.54X_7$ where $X_1,X_2,X_3,X_4,X_5,X_6,X_7$ are sand, silt, clay, available moistuer, porosity, organic matter and exchangeable cation respectively. The productivity of certain casing material could be predicted from this equation. 7. Fresh weight of fruit bodies was positively correlated with porosity exchangeable cation, organic matter, available moisture, silt and clay of materials; while sand was negatively correlated. On the contrary, sand was the unique factor reducing per cent of open cap. 8. Distribution of three phases of high productive casing material was concentrated in the range of 10 to 30 per cent solids, 15 to 30 per cent liquids, and 50 to 60 per cent in air volume. 9. Fresh weight of fruit bodies from peat was not affected with heavy watering but in clay loam and sandy loam severe crop losses occurred. Fresh weight of individual fruit was increased and open caps were decreased with heavy watering but light watering resulted in adverse effects: its effect was especially great in peat. 10. Optimum range of moisture content by weight on a dry basis was different with each casing material. To maintain optimum moisture content concerned with yield of fruit bodies and open cap, sandy loam and peat mixtures required daily watering of 0.6, 0.6 to 1. 2 and 1.2 to 2.4 liters per $3.3m^2$ of bed area, respectively. 11. Maximum yield of fruit body was recorded in the range of pF 2. 0 to 2. 5 of casing materials if organic matter content was below 4.2 per cent and in pF 1. 3 to 1.8 if above 7.1%. 12. pF curve of a certain casing material could be draws from moisture content at various pF values by multiple regression equations provided texture, organic matter and calcium of the casing material are given. Optimum moisture range of the casing materials also could be estimated by the equation. 13. It was possible to improve the phyico-chemical characteristics of clay loam and sandy loam by addition of weathered spent compost although the effect was less than in the case of peat. Fresh weight of fruit bodies wsa increased by addition of weathered spent compost but its effect was not as remarkable as peat. Accordingly, further studies will be required.

  • PDF

Growth and yield responses of rice varieties to various soil water deficit conditions under different soil types

  • Kikuta, Mayumi;Samejima, Hiroaki;Magoti, Rahab;Kimani, John M.;Yamauchi, Akira;Makihara, Daigo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.322-322
    • /
    • 2017
  • To avoid drought stress under rainfed upland conditions, it is important for rice to efficiently utilize water at shallow soil layers supplied by rainfall, and access to water retained in deer soil layers. The root developmental characteristics of rice, which play important role in the adaptability to drought conditions, vary depending on the variety. Moreover, water availability for plant differs depending on the soil types that have different physical properties such as water holding capacity, permeability, capillary force, penetration resistance, etc. In this study, we evaluated growth and yield responses of rice varieties to various soil water deficit conditions under three different soil types. The experiment was conducted in a plastic greenhouse at the Kenya Agricultural and Livestock Research Organization-Mwea from October 2016 to January 2017. Two upland varieties (NERICA 1 and 4) and one lowland variety (Komboka) were grown in handmade PVC pots (15.2 cm diameter and 85.0 cm height) filled with three different types of soil collected from major rice-growing areas of the country, namely black cotton (BC), red clay (RC), and sandy clay (SC). Three watering methods, 1) supplying water only from the soil surface (W1), 2) supplying water only from the bottom of the pots (W2), and 3) supplying water both from the soil surface and the bottom of pots (W3), were imposed from 40 days after sowing to maturity. Soil water content (SWC) at 20, 40, and 60 cm depths was measured regularly. At the harvesting stage, aboveground and root samples were collected to determine total dry weight (TDW), grain yield, and root length at 0-20, 20-40, 40-60, and 60-80 cm soil layers. Irrespective of the watering methods, the greatest root development was obtained in RC, while that in BC was less than other two soils. In BC, the degree of yield reduction under W1 was less than that in RC and SC, which could be attributed to the higher water holding capacity of BC. In RC, the growth and yield reduction observed in all varieties under W1 was attributed to the severe drought stress. On the other hand, under W2, SWC at the shallow soil depth in RC was maintained because of its higher capillary force compared with BC and SC. As the result, growths and yields in RC were not suppressed under W2. In SC, deep root development was not promoted by W2 irrespective of the varieties, which resulted in significant yield losses. Under W1, the rice growth and yield in SC was decreased although shallow root development was enhanced, and the stomatal conductance was maintained higher than RC. It was suspected that W1 caused nutrients leaching in SC because of its higher permeability. Under rainfed conditions, growth and yield of rice can be strongly affected by soil types because dynamics of soil water conditions change according to soil physical properties.

  • PDF

An Automatic Operating System for Manless Multipurpose in Greenhouse (시설원예의 생력화를 위한 다목적 자동작업장치 개발)

  • 민병로;김웅;이범선;이대원
    • Journal of Bio-Environment Control
    • /
    • v.13 no.3
    • /
    • pp.143-148
    • /
    • 2004
  • The automatic operating system was designed and built to work manless multipurpose in greenhouse. The system proved to be a reliable system for performing multipurpose functions. Its development involved the integration of moving part, height control part, watering part, ventilation part and inhalation part. The moving part was able to be moved it on the rail installed in greenhouse, the height control part controled it up and down by height of the crops, the watering part sprinkled a agricultural medicines on the crops and the ventilation and the inhalation part ventilated and inhaled different thing and vermin which were attached on crops. Based on the results of this study the following conclusions were made: The moving velocity was changed 0.047 - 0.027 m/s by the dial transfer. The velocity within 50 cm from center of the entrance was 0.2 m/s. The watering volume of spray increased as the pressure of spray was high. The difference of spray pressure between 10 kg/$\textrm{cm}^2$ and 15 kg/$\textrm{cm}^2$ was 60 ml, but that of spray pressure between 15 kg/$\textrm{cm}^2$ and 20 kg/$\textrm{cm}^2$ was 20 ml. The average speed of a current of inhalation was 3.64 m/s and the inhalation flux of inhalation was measured 0.044 ㎥/s by using glues seed and styrofoam.

Confirmation of Drought Tolerance of Ectopically Expressed AtABF3 Gene in Soybean

  • Kim, Hye Jeong;Cho, Hyun Suk;Pak, Jung Hun;Kwon, Tackmin;Lee, Jai-Heon;Kim, Doh-Hoon;Lee, Dong Hee;Kim, Chang-Gi;Chung, Young-Soo
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.413-422
    • /
    • 2018
  • Soybean transgenic plants with ectopically expressed AtABF3 were produced by Agrobacterium-mediated transformation and investigated the effects of AtABF3 expression on drought and salt tolerance. Stable Agrobacterium-mediated soybean transformation was carried based on the half-seed method (Paz et al. 2006). The integration of the transgene was confirmed from the genomic DNA of transformed soybean plants using PCR and the copy number of transgene was determined by Southern blotting using leaf samples from $T_2$ seedlings. In addition to genomic integration, the expression of the transgenes was analyzed by RT-PCR and most of the transgenic lines expressed the transgenes introduced. The chosen two transgenic lines (line #2 and #9) for further experiment showed the substantial drought stress tolerance by surviving even at the end of the 20-day of drought treatment. And the positive relationship between the levels of AtABF3 gene expression and drought-tolerance was confirmed by qRT-PCR and drought tolerance test. The stronger drought tolerance of transgenic lines seemed to be resulted from physiological changes. Transgenic lines #2 and #9 showed ion leakage at a significantly lower level (P < 0.01) than ${\underline{n}}on-{\underline{t}}ransgenic$ (NT) control. In addition, the chlorophyll contents of the leaves of transgenic lines were significantly higher (P < 0.01). The results indicated that their enhanced drought tolerance was due to the prevention of cell membrane damage and maintenance of chlorophyll content. Water loss by transpiration also slowly proceeded in transgenic plants. In microscopic observation, higher stomata closure was confirmed in transgenic lines. Especially, line #9 had 56% of completely closed stomata whereas only 16% were completely open. In subsequent salt tolerance test, the apparently enhanced salt tolerance of transgenic lines was measured in ion leakage rate and chlorophyll contents. Finally, the agronomic characteristics of ectopically expressed AtABF3 transgenic plants ($T_2$) compared to NT plants under regular watering (every 4 days) or low rate of watering condition (every 10 days) was investigated. When watered regularly, the plant height of drought-tolerant line (#9) was shorter than NT plants. However, under the drought condition, total seed weight of line #9 was significantly higher than in NT plants (P < 0.01). Moreover, the pods of NT plants showed severe withering, and most of the pods failed to set normal seeds. All the evidences in the study clearly suggested that overexpression of the AtABF3 gene conferred drought and salt tolerance in major crop soybean, especially under the growth condition of low watering.

Effect of Watering on Growth and Essential Oil Content of Sweet Basil (Ocimum basilicum) (관수량이 sweet basil(Ocimum basilicum)의 생장과 정유함량에 미치는 영향)

  • Baeck, Hae-Won;Park, Kuen-Woo
    • Horticultural Science & Technology
    • /
    • v.19 no.1
    • /
    • pp.81-86
    • /
    • 2001
  • This experiment was carried out to investigate watering with relation to growth, quality and yield of essential oil in sweet basil. The degree of water stress was taken as amount of watering. D1 was watered with 25mL for 2 weeks and 30mL from 4 to 5 weeks after planting in Wagner pot (1/20000a, ${\phi}24cm$). As this, 75mL and 90mL, 225mL and 270mL, and 675mL and 810mL were watered in D2, D3, and D4 treatment respectively. DFT was set up as water stress was not inflicted. The growth of basil in D3 and D4 was better than that of others, in which root activity was as much twice as that of D1. Essential oil of D1 was recorded the lowest content as 0.33%. The result of proline content, peroxidase activity, photosynthesis, stomatal conductance and stomatal resistance were proved D1 to be stressed. This treatment consequently increased the content of essential oil. In consideration of growth and essential oil content, D3 treatment was highest as 47.37mg in oil production per plant. Finally, D3 watered with 225mL for 2 weeks and 275mL from 4 to 5 weeks after planting could be selected on the purpose of both plant growth and essential oil production. Essential oil content of sweet basil was increased in response to water stress. For increase of essential oil yield, oil synthesis could be raised by giving water stress just before harvesting.

  • PDF

Plant Grouping by Light and Watering of Cacti and Succulents Planting in a Pot and Its Current Situation (선인장 및 다육식물 혼합식재 실태 및 광과 수분요구에 따른 식물의 분류)

  • Song, C.Y;Lee, S.D.;Lim, S.H.;Kim, S.J.;Lee, J.S.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.8 no.1
    • /
    • pp.30-42
    • /
    • 2006
  • This experiment was conducted to investigate current situation and plant grouping by light and watering of mingled several cacti and succulents in a pot. The main 11 cacti are consist of Myrtillocactus geometrizans (Mart.) Cons., Gymnocalycium mihanovichii var. friedrichii Werd., Marginatocereus marginatus(DC.) Backbg., Eriocactus leninghausii (Hge. Jr.) Backbg, Notocactus scopa (Spreng.) Berg., Lobivia nealeana Backbg., Mammillaria elongata var. intertexta (DC.) SD., Pseudoespostoa (Vp1.) Backbg., Mammillaria albilanata Backbg., Mammillaria klissingiana Bod. and Espostoa lanata (HBK.) Br. & R. The main 10 succulents are Kalanchoe thyrsifolia Harv., Portulacaria afra var. foliis-variegatis Jacobs., Crassula perforata Thunbg., Echeveria pulvinata Rose, Aeonium arboreum cv. atropurpureum., Echeveria lauii Moran & J. Meyran, Pachypodium lamerei Drake, Sedum rubrotinctum cv. Aurora Boom., Aloe mitriformis Mill., and Euphorbia coerulescens Haw. The cacti were native to Mexico, Brazil, Peru, Paraguay, Ecuador, etc. The sucullents were native to Mexico, Africa, Gran Canaria, Madagascar, etc. Most of all the cacti and sucullents in the experiment are growing well under full sun or light shade, however Portulacaria afra var. foliis-variegatis Jacobs, and Sedum rubrotinctum cv. Aurora Boom. did not influenced by light. And all the plants require a little or moderate watering. Thus, planting by similar required water and light, when growing in a pot of several cacti and succulents, might be decreased the rate of death causing by their different plant physiology.

Mass Production of High-Quality Bonsai through Development of Bottom Irrigation System (저면관수식(底面灌水式) 분상설비(盆上設備)에 의한 고품질(高品質) 분재(盆栽)의 대량생산(大量生産))

  • Lee, Ki-Eui
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.5-14
    • /
    • 2000
  • This study was conducted to cultivate a large quantity of high-quality Bonsai through the development of bottom irrigation system. Bonsai placed on the FRP bed were grown very well by bottom irrigation system compared with direct watering and sprinkler system. It was concluded that bottom irrigation system was possible to reduce considerable manual labor and produce mass production of high-quality Bonsai.

  • PDF

Factors Affecting Abdominal Fatness of Broiler Chicks (육계의 복강지방 축적에 영향을 미치는 요인들)

  • 석윤오
    • Korean Journal of Poultry Science
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • The effects of genetic, physiological, and environmental factors(temperature, and type of watering system) on growth factors, accumulation of abdominal fat(AF), and the association between growth factors and AF of broilers and Athens-Canadian Randombred (ACRB) were studied in a series of nine trials. The final BW(6 or 7 wk) and 4-6 or 5-7 wk gain (G) were greater in groups raised at 21.1˚C than 26.7˚C. There was no consistent effects of environmental temperature on feed conversion ratio (FCR) although the FCR was significantly (P$\leq$.o5) reduced in 21. 1˚C group compared with the 26.7˚C group in two of six trials. The overall mean weight of AF relative to BW at 43 or 50 days of age were not significantly different between temperature groups: the means of AF of 21.1˚C and 26.7˚C groups were 1.81 and 1.78%, respectively. Environmental temperature had no consistent effect on the relationship between 4-6 or 5-7 wk C and 43 or 50 days AF, and 4-6 wk FCR and 43-days AF ; however, the association of 50 days AF with 5-7 wk FCR was highly significant in both temperature groups. The overall mean of correlation coefficient between FCR and AF was very low (r=.107). The waterer types did not significantly affect the AF. Generally, the effect of sex on the relationship between G and AF was not consistent in both sex groups. However, the association of AF with G was much greater in ACRB group compared with broiler group. The initial body weights (4 or S wk) was significantly (P$\leq$.001) correlated with AF in ACRB group, but not in the broiler groups. The effect of sire on AF was very high(P$\leq$.0001) in five of six trials.

  • PDF

Elect on Saving Water of Underground Trickle Irrigation (지중관수 방법에 의한 용수절감 효과)

  • Kim J. H.;Kim C. S.;Kim T. W.;Hong J. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.102-109
    • /
    • 2005
  • Water consumption at the farm is up to 48 percent of water resource of South Korea while manufacturing industry's is only $9.6\%$. The area of arable land is 2,077,067 ha and 27 percent of it is used for growing fruits and vegetables using furrow or surface irrigation at the greenhouse. Surface irrigation at the greenhouse for fruits and vegetables has problems such as over watering and insufficient supply of water to the fine roots of the plant. However, the research on the new method of irrigation to save water usage is few. The characteristics of soil wetting was measured for using surface irrigation and underground trickle irrigation method where water was supplied at 10, 15, 20, and 25 cm beneath the surface ground. Followings are summary of this study. 1. The efficiency of underground trickle irrigation was expected to be as high as twice of surface irrigation such as drip watering or sprinkling. 2. This improvement could be possible by using less than $50\%$ of irrigation water than surface irrigation to supply similar amount of water near fine roots. 3. Surface irrigation causes soil compaction as deep as 20 cm below the surface ground which reduces soil porosity and root respiration ending up developing less fine roots. 4. Underground trickle irrigation can prevent overdamping in the greenhouse since it does not over wet the surface soil. At winter, the amount of agricultural chemical usage could be reduced since this irrigation method does not develop blight or crop disease from condensation of water vapor.