• Title/Summary/Keyword: water-washer

Search Result 24, Processing Time 0.02 seconds

A Study on the Cleaning Device of Bidet Washer (비데 세정기의 세척장치에 관한 연구)

  • Lim, Yeon-Jeong;Lim, Sang-Ho
    • Industry Promotion Research
    • /
    • v.4 no.1
    • /
    • pp.21-27
    • /
    • 2019
  • This study is about the bidet which is used to clean the anal and local parts after the user seated on the left side of the toilet in the toilet. The cleaner of the bidet which is contaminated from various bacteria and dirt is washed clean with clean water to keep it clean The present invention relates to a cleaning device for a bidet cleaner that hygienically maintains a bidet used by a plurality of users. As a result of developing and studying a bidet nozzle that can be implemented with a bidet nozzle and a washing nozzle for automatically washing the jetting head of the bidet and the jetting head, the optimum jetting time of the nozzle after the hydraulic jetting is 1 second To 10 seconds, it was confirmed that the nozzle cleanliness of an average of 5 seconds was maintained at 100%. Subsequent studies will require further study of the durability of the product and the cleaning safety at a pressure of $5kg/mm^2$. Toilet bidet is a product that is closely related to the safety and life of the people, but the development of various technologies is still insufficient. Therefore, it is meaningful that this study contributed to the quality of life of the people by continuously researching and developing the bidet.

Evaluation of Dust Removal Efficiency on Roadway Structures Using Ultrafine Bubble Water Jet (초미세기포 water jet을 이용한 도로 시설물 분진 제거 효율 평가)

  • Kim, Hyun-Jin;Park, Il-gun
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.39-46
    • /
    • 2021
  • A road structure washing vehicle equipped with a 4 HP, 80 LPM ultrafine bubble generator was used to clean a tunnel wall and the surface of the surrounding structure, consisting of concrete and tiles, in a heavy traffic area around an apartment complex in the city. Ultrafine bubbles were generated by supplying air at 2 to 3 LPM and using a specially designed nozzle, whereas fine bubbles made by an impeller in a gas-liquid mixing self-priming pump were produced with an average diameter of 165.4 nm and 6.81 × 107 particles mL-1. Using a high pressure washer gun that can perform high-pressure cleaning at 150 bar and 30 LPM, ultrafine bubbles were used to wash dust adsorbed on the surface of the road structures. The experimental analysis was divided into before and after washing. The samples were analyzed by applying ISO 8502-3 to measure surface contamination of dust adsorbed on the surface. Using the transparent tape attached to the surface, the removal rate was calculated by measuring the weight of the dust, and the number of particles was calculated using the gravimetric method and the software, ImageJ. The results of the experiment showed that the number of dust particles adsorbed on the tile wall surface before and after washing were 3,063 ± 218 particles mL-1 and 20 ± 5 particles mL-1, respectively, with weights of 580 ± 82 mg and 13 ± 4 mg. Particles on the surface of the concrete structure before and after washing were 8,105 ± 1,738 particles mL-1 and 39 ± 6 particles mL-1, respectively, with weights of 1,448 ± 190 mg and 118 ± 32 mg.

Fungal Occurrence in Fresh and Dried Red Pepper (건고추 생산단계 중 고추의 곰팡이 발생)

  • Kim, Sosoo;Baek, Seul Gi;Hwang, Injun;Kim, Se-Ri;Jung, Gyusuck;Roh, Eunjung;Jang, Ja Yeong;Kim, Jeomsoon;Lee, Theresa
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.6
    • /
    • pp.571-575
    • /
    • 2019
  • Fungal occurrence during production of dried red pepper was investigated using red pepper samples collected at harvest, before and after washing, and before, during or after drying. Fungal incidence was evaluated by counting the number of fungal colonies grown after incubating random pepper cuts on potato dextrose agar plates. Washing with ground water had no significant effect on reduction of fungal contamination. Fungal increase was observed in some samples, and the insides of washer and containers were contaminated with fungi. Drying caused significant fungal increase regardless of drying method although the fungal incidence after machine drying was lower than that after greenhouse drying. Fungal increase was observed in the samples being dried in a greenhouse and some mycotoxigenic species were also detected. Therefore, the most important control point for fungal contamination during dried pepper production appears to be the drying process, especially in a greenhouse.

Analysis of microplastics released from textiles according to filter pore size and fabric weight during washing (세탁 중 세탁물 중량과 여과 기공 크기에 따른 미세플라스틱 분석)

  • Choi, Sola;Kwon, MiYeon;Park, Myung-Ja;Kim, Juhea
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.23 no.1
    • /
    • pp.37-45
    • /
    • 2021
  • This study observed the release of microplastics according to washing weights and filtering conditions, measured microplastic generation rates, fiber lengths, and fiber diameters. This study attempted to present data for the development of filters that decrease microplastic generation. For test samples, polyester piled knit fabric (cut-pile) was selected, which currently has the highest amount of consumption in the clothing industry, but can easily cause marine pollution because of its low biodegradability. For test equipment, a drum washer was used and microplastics were collected using two filter pore sizes, 5 ㎛ and 20-25 ㎛. Microplastic fibers weights and lengths were measured. The results of the experiment showed the following: 1) The release of microplastics differed according to the fabric weights and washing process; 2) washing fabric weights showed a differences in the collection amount according to the filter pore size (5 ㎛, 20-25 ㎛); 3) observations of differences in the lengths of the microplastics that occur during the washing process by filter pore size were made. Fibers with shorter lengths appeared with filter pore sizes of 5㎛ in comparison to filter pore sizes of 20-25㎛. The results from this study on microplastic generation by fabric during washing, demonstrated the following conclusions that can be used to reduce the release of microplastics. First, the release of microplastics according to fabric weights and washing courses are affected by physical force. Therefore, it is necessary to reduce the amount of physical force due to water flow, increase the fabric weight, or wash the material in low temperatures. Second, in the manufacturing of washing machines, microplastic filtration can be promoted or legislatation supporting microplastic filtration can be introduced.