• Title/Summary/Keyword: water-vapor permeability

Search Result 189, Processing Time 0.026 seconds

Study of Development of Selective Removal Adsorption Ion Exchange Resin Materials for Fabricated with Chemical-biological Cloth by QFD (QFD 기법을 이용한 특정 유해가스 노출제어 이온선택성 보호복 소재개발연구)

  • Song, Hwa Seon;Koo, Il Seob;Kim, In Sik
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.359-372
    • /
    • 2015
  • Purpose: Through studying the expert's and non-experts panel responses to the questions regarding the attributes of chemical-biological protection cloth quality in terms of the levels of customer demand and technical factors has been studied. We are applied to a QFD matrix with find out the relationship between the selective removal efficiency of chemical-biological cloth and the guidelines of technical approach. Methods: We fabricated several composite of ion-exchange resins with selectively permeable performance designed to facilities water vapor transport and selective adsorption of the harmful gases. With these materials, we characterized on the selectively permeable performance to identify ion-exchange resin with chemical-biological protective cloth. Results: Results showed that ion exchange materials possessed performance with selectively efficiencies as NH3, SOx, NOx and HCl gas. The selective adsorption amount of ammonia and hydrogen gases were $90-80{\mu}g/g$ with TRILITE SCR-BH sulfonated ion exchange resin. The PP non-woven/ion exchange resin adsorbent materials possessed performance with water vapor permeability were 1,100-1,350 g/m2/day, it's was two times high value compare with activated carbon. With these materials, we characterized selectively removal efficiency to identify new ion-exchange material with chemical-biological protective capability. Conclusion: This study shows that a QFD aids in deciding with of the adsorption parameters to optimized with chemical-biological protection cloth manufacturing.

Characterization of LLDPE/CaCO3 Composite Drawn Film (연신된 LLDPE/CaCO3 composite film의 특성분석)

  • Lee, Jungeon;Park, Jae Min;Jung, Jae Hoon;Kim, Tae Young;Han, Myung Dong;Seo, Jang Min;Seo, Min Jeong;Yang, Seong Baek;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.34 no.1
    • /
    • pp.68-75
    • /
    • 2022
  • The breathable film refers to a high-functional film that allows gas and water vapor to pass through very fine and sophisticated pores but not liquid. In this research, the breathable film was prepared based on linear low-density polyethylene (LLDPE) and CaCO3 particles by extrude method. The LLDPE composite film containing CaCO3 particles had excellent mechanical properties and functionalties. The drawing is a technologically simple and excellent method for improving the mechanical properties of composite films. In this work, the effects of draw ratio on morphology, crystallinity, pore size distribution, mechanical properties, and water vapor permeability of the films were examined. The results revealed that both surface morphology and breathability were affected by the influence of chain orientation and crystal growth with increasing the draw ratio. The mechanical properties were improved with increasing the draw ratio.

Edible Packaging Film Derived from Mechanically Deboned Chicken Meat Proteins: Effect of Transglutaminase on Physicochemical Properties

  • Yayli, Damla;Turhan, Sadettin;Saricaoglu, Furkan Turker
    • Food Science of Animal Resources
    • /
    • v.37 no.5
    • /
    • pp.635-645
    • /
    • 2017
  • In this study, effect of transglutaminase (TGase) addition on physical, water barrier, optical and mechanical properties of mechanically deboned chicken meat protein (MDCM-P) films was investigated. When TGase was added to the films, the thickness increased, but the solubility decreased. Films treated with TGase exhibited higher water vapor permeability than control film (p<0.05). When TGase concentration increased, the $L^*$ values of films decreased, but $a^*$ and $b^*$ values increased. All films showed very good barrier properties against UV light. The highest tensile strength was obtained in MDCM-P films containing 3% TGase (p<0.05). The elongation at break values increased with the TGase concentration increasing from 1 to 3%, but decreased at higher enzyme concentration (p<0.05). The addition of TGase altered molecular organization and intermolecular interaction in the film matrix. TGase treated films showed smoother and ordered surface structure and homogeneous and compact microstructure. The results indicated that TGase use can be an effective approach in improving the solubility and mechanical properties of MDCM-P films.

Molecular weight of chitosan affect characteristics of chitosan films (분자량에 따른 키토산 필름의 특성)

  • Rhim, Jong-Whan;Ham, Kyung-Sik;Park, Sun-Young
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.6 no.1
    • /
    • pp.24-30
    • /
    • 2000
  • Chitosan films were prepared using four types of chitosans with different molecular weight and the effect of molecular weight of chitosan on selected film properties such as color, water vapor permeability (WVP), water solubility (WS), tensile strength (TS), and elongation at break (E) was investigated. Generally, the total color difference (${\Delta}E$) and WS of the films decreased, while TS and E of the films increased as molecular weight of chitosan increased. WVP of the films did not show any significant relationship with molecular weight of chitosan.

  • PDF

Modification of Soy Protein Film by Formaldehyde (Formaldehyde 처리에 의한 대두단백 필름의 물성 개선)

  • Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.372-378
    • /
    • 1998
  • Two types of formaldehyde-treated soy protein isolate (SPI) films, formaldehyde-incorporated and formaldehyde-adsorbed films, and control SPI films were prepared. Cross-linking effect of formaldehyde on selected film properties such as color, tensile strength (TS), elongation at break (E), water vapor permeability (WVP), and water solubility (WS) were determined. Physical properties of formaldehyde-incorporated films were not geneally different from those of control films, while almost all of those among formaldehyde-adsorbed films were significantly different. Through cross-linking development within formaldehyde-adsorbed films, WS decreased significantly (P<0.05) from 26.1% to 16.6%, and TS increased two times while E decreased two times compared with control films. This was caused by insolubilization and hardening of protein by cross-linking most likely attributed to the significant changes in properties of protein films reacted with formaldehyde.

  • PDF

Effects of Concentration of ZnO Nanoparticles on Mechanical, Optical, Thermal, and Antimicrobial Properties of Gelatin/ZnO Nanocomposite Films

  • Shankar, Shiv;Teng, Xinnan;Rhim, Jong-Whan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.20 no.2
    • /
    • pp.41-49
    • /
    • 2014
  • This study illustrates the synthesis of gelatin based zinc oxide nanoparticle (ZnONPs) incorporated nanocomposite films using different concentrations of ZnONPs. The ZnONPs were oval in shape and the size ranged from 100- 200 nm. The nanocomposite films were characterized by UV-visible, FE-SEM, FT-IR, and XRD. The concentrations of ZnONPs greatly influenced the properties of nanocomposite films. The absorption peaks around 360 nm increased with the increasing concentrations of ZnONPs. The surface color of film did not change while transmittance at 280 nm was greatly reduced with increase in the concentration of ZnONPs. FTIR spectra showed the interaction of ZnONPs with gelatin. XRD data demonstrated the crystalline nature of ZnONPs. The thermostability, char content, water contact angle, water vapor permeability, moisture content, and elongation at break of nanocomposite films increased, whereas, tensile strength and modulus decreased with increase in the concentrations of ZnONPs. The gelatin/ZnONPs nanocomposite films showed profound antibacterial activity against both Gram-positive and Gram-negative food-borne pathogenic bacteria. The gelatin/$ZnONP^{1.5}$ nanocomposite film showed the best UV barrier and antimicrobial properties among the tested-films, which indicated a high potential for use as an active food packaging films with environmentally-friendly nature.

  • PDF

A Study on the Improvement in Performances and Wearing Sensation of Textiles for Taekwondo Wears (태권도복 소재의 성능 및 착용감의 개선을 위한 연구)

  • 전영민;박정희;최정화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.1
    • /
    • pp.134-142
    • /
    • 2003
  • Performances of Taekwondo fabrics were evaluated in respect of fiber component. yarn count, weave structure and wearing comfort. As a beginning step, we investigated the present situation of Taekwondo wears by questionnaire from pro and amateur Taekwondo players. Samples employed in this study were cotton/nylon blend fabric that was newly woven for this study as well as fabrics of current Taekwondo wears for sale in the market. Their fundamental properties measured were such as air permeability, water vapor transport. wickability, absorption rate, Qmax values, thermal conductivity, durability, hand value, and etc. In addition, subjective wearing sensations were evaluated using Taekwondo wears made of those fabrics. From the results of the objective measurement and the subjective wearing test, we estimated the total fitness of fabrics as a Taekwondo wear. From the questionnaire we could see that pro players and amateurs wanted highly absorbing, quick drying, and soft-tough and complained abrasive surfaces and static elasticity of current fabrics. In view of the results so far achieved, nylon blended fabrics newly woven in this study, showed better comfort-related properties from both of the objective and subjective tests. It was also represented that finer yams enhanced water absorption and touch, and fabrics with rough surface such as honeycomb weave was superior in wearing comfort as well as aesthetic appearance.

Relationship between Moisture Barrier Properties and Sorption Characteristics of Edible Composite Films

  • Ryu, Sou-Youn;Rhim, Jong-Whan;Lee, Won-Jong;Yoon, Jung-Ro;Kim, Suk-Shin
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.68-72
    • /
    • 2005
  • Moisture sorption characteristics of edible composite films were determined and compared against moisture barrier properties. Edible composite films were Z1 (zein film with polyethylene glycol(PEG) and glycerol), Z2 (zein film with oleic acid), ZA1 (zein-coated high amylose corn starch film with PEG and glycerol), and ZA2 (zein-coated high amylose corn starch film with oleic acid). Z2 film showed the lowest equilibrium moisture content (EMC), monolayer value ($W_m$), water vapor permeability (WVP), and water solubility (WS). Surface structure of Z2 was relatively denser and finer than that of other edible films. GAB $W_m$ and C values decreased, while K values increased with increasing temperature. Correlation coefficients of WS:EMC and WVP:EMC at Aw 0.75 were higher than those of WS: $W_m$ and WVP: $W_m$, respectively. EMC values at Aw 0.75 appeared useful for evaluating or predicting moisture barrier properties of edible films.

Physical Properties of Locust Bean Gum-Based Edible Film (Locust Bean Gum으로 제조한 가식성 필름의 물리적 특성)

  • Choi, Soo-Jin;Kim, Sang-Yong;Oh, Deok-Kun;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.363-371
    • /
    • 1998
  • Locust bean gum (LBG)-based edible film was prepared, and opacity, water vapor permeability (WVP), tensile strength (TS) and elongation (E) of the film were measured. Opacity values of the film was a little higher than that of other transparent films. WVP decreased as LBG concentration decreased. Plasticizers and drying temperature didn't seem to influence WVP. WVP of the film increased greatly at 85% RH as compared to that of 0% RH. WVP of the film seemed to increase linearly with thickness of the film. But WVP of the film was lower those of other edible films. TS increased with increase of LBG concentration, and decreased with increase of glycerol concentration. E decreased with increase of LBG concentration, and increased with increase of sorbitol concentratin. LBG-based composite films were prepared by adding agarose, k-carrageenan or xanthan gum. TS and E of the composite film with addition of k-carrageenan increased.

  • PDF

Characteristics of Soy Protein Isolate Films Plasticized by Mixtures of Crystalline and Aqueous Sorbitol or Glycerin (솔비톨 혼합물과 글리세린 가소제에 의한 분리 대두단백질 필름의 특성연구)

  • Kim Ki-Myong;Hanna Milford A.;Choi Won-Seok;Cho Sung-Hwan;Choi Sung-Gil
    • Food Science and Preservation
    • /
    • v.13 no.3
    • /
    • pp.285-291
    • /
    • 2006
  • The effects of sorbitol mixture as plasticizers on moisture sorption property (MSP), water vapor permeability (WVP), color, tensile strength (TS), elongation at break (E), and total soluble matter (TSM) of soy protein isolate (SPI) films were investigated. Two different types of sorbitols, aqueous and crystalline, were added to film-forming solutions in various ratios of crystalline to aqueous (0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, or 1:0, based on weight). In addition, the characteristics of the SPI films plasticized by sorbitol mixtures and glycerin were compared with moisture sorption rate against time. Sorbitol-plasticized films had higher in TS, but lower in WVP and E than the glycerin-plasticized films. However the properties of SPI films did not differ appreciably by the type of sorbitol added to film-forming solutions. To explain the high solubility and low WVP of sorbitol-plasticized films, cumulative amounts of moisture content gained during adsorption and lost during desorption of films were compared between sorbitol and glycerin-plasticized films. The result suggest that use of sorbitol as a plasticizer for preparing SPI films improves moisture barrier properties of the films. However the high solubility of sorbitol-plasticized films needs to be reduced for improving the functionality of SPI films in potential packaging applications.