• Title/Summary/Keyword: water-retention capacity

Search Result 205, Processing Time 0.029 seconds

Development of Carbonization Technology and Application of Unutilized Wood Wastes(I) -Carbonization and It's Properties of Thinned Trees- (미이용 목질폐잔재의 탄화 이용개발(I) -수종의 간벌재 탄화와 탄화물의 특성-)

  • Kim, Byung-Ro;Kong, Seog-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.70-77
    • /
    • 1999
  • Objective of this research is to obtain fundamental data of carbonized wood wastes for soil condition, de-ordorization, absorption of water, carrier for microbial activity, and purifying agent for water quality of river. The carbonization technique and the properties of carbonized wood wastes(thinned trees) are analyzed. Proximate analysis shows the thinned wood contains 0.22-0.73% ash, 77-80% volatile matter, and 10-14% fixed carbon. The charcoal yield decreases and the shrinkage rate increases as the carbonization temperature and time increase. The charcoal yields of Larix leptolepis, Pinus rigida and Pinus densiflora are high, whereas those of Pinus koraiensis and Quercus variabilis are low. The shrinkage rate by carbonization has same trend as water removal of wood. The specific gravity after the carbonization decreases about 50% comparing to green wood. The charcoal has 0.89-4.08% ash, 6.31-13.79% volatile matter, and 73.9-83.5% fixed carbon. As the carbonization temperature and time increase, pH of charcoal increases. When the carbonization temperature is $400^{\circ}C$, pH is about 7.5. When the temperature is between 600 to $800^{\circ}C$, pH is about 10 with small difference. The water-retention capacity is not affected by the carbonization temperature and time. The water-retention capacity within 24hr is about 2.5 - 3times of sample weight, and the equivalent moisture content becomes 2-10% after 24 hr.

  • PDF

Effect of Substituted Groups on the Retention of Monosubstituted Phenols in Reversed-Phase Liquid Chromatography (역상 액체 크로마토그래피에서 페놀 일치환체들의 머무름에 미치는 치환기들의 영향)

  • Kim, Hun Ju;Lee, In Ho;Lee, Dae Un
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.8
    • /
    • pp.562-569
    • /
    • 1994
  • The retention data of twenty one monosubstituted phenols in the eluent systems containing 30∼70% of methanol or acetonitrile as organic modifiers, on $ C_{18}$ and Phenyl columns were collected to investigate the effect of the substituted groups on the retention of phenols. The capacity factors of the solutes except amino phenols are greater on $ C_{18}$ than on Phenyl column. And all the solutes have shown greater capacity factors in methanol-water than that in acetonitrile-water as a mobile phase. Generally the elution order between meta and para isomers of monosubstituted phenols in consistent (p < m) regardless of the polarity of the substituted group. But the elution order between ortho and meta isomers of phenol varies with regard to the polarity of the substituted group. The retention of the monosubstituted phenols has been influenced by the interaction between the solute and unreacted silanol of columns as well as the interaction between the solute and $ C_{18}$ or phenyl group of columns. And then, the effect of unreacted silanol on the retention of the monosubstituted phenols is greater on $ C_{18}$ than on Phenyl column. And the greater hydrogen bonding acceptor basicity(${\beta}$) of the substituted group is, the greater this effect is. The relationship between the retention of the monosubstituted phenols and their parameters such as van der Waals volume(VWV) and hydrogen bonding acceptor basicity(${\beta}$) has been investigated. The good linearity has been observed in the plot log k' vs. (1.01VWV/100-1.84${\beta}$). In consequence, the retention of the monosubstituted phenols on $ C_{18}$ and Phenyl columns can be easily predicted by the parameter (1.01VWV/100-1.84${\beta}$).

  • PDF

Retention Behavior of Organic Compounds on Reversed-Phase Column expected by Van der Waals Volume (Van der Waals Volume을 이용한 역상 컬럼에서의 유기화합물들의 용출거동)

  • Park, Wun-Kyu;Lee, Yong-Moon;Moon, Dong-Cheul;Kang, Jong-Seong
    • Analytical Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.383-390
    • /
    • 1993
  • Retention behaviors of aliphatic and aromatic compounds were investigated with Van der Waals volume which represented the molecular size. The organic solvents, methanol, acetonitrile and tetrahydrofuran, were mixed with water at various ratio, respectively. The selectivity of organic solvents were tested by change of column temperature. The capacity factor was increased linearly according to the enlargement of molecular size. Therefore, Van der Waals volume was useful to predict the elution of organic molecules in reversed-phase column. The order of elution capacity of solvents was methanol

  • PDF

Comparison of Water Infiltration and Retention Capacity in a Forest Soil of Different Surface Depression Patterns (지면 굴곡에 따른 산림 토양의 물 침투와 저류능력 비교)

  • Cho, Yoori;Kim, Jongho;Lee, Dowon
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.1
    • /
    • pp.108-111
    • /
    • 2018
  • Increasing soil surface roughness can be effective in enhancing infiltration of rainfall and depression storage capacity of forest soil and reducing surface run-off. In this study, a forest slope with hemispherical depressions shows greater infiltration of water, whereas depression storage capacity is higher in soil with depressions perpendicular to a water flow pathway. Soil pitting or forming surface depressions can be used as a countermeasure after forest fires and a practical way to reduce drought stress of forest soil.

Quality Characteristics of Sugar Snap-Cookie with Added Cornus fructus (산수유 분말을 첨가한 쿠키의 품질 특성에 관한 연구)

  • Ko, Hee-Chul
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.20 no.6
    • /
    • pp.957-962
    • /
    • 2010
  • This study examined the effects of Cornus fructus addition to suger snap cookies on WRC (water rentention capacity) and AWRC (alkaline water retention capacity). WRC and AWRC increased as more Cornus fructus powder was added, whereas the sedimentation value and Pelshenke value decreased. Regarding cookie color, L value decreased, whereas the a and b values increased. As the cookie diameter became smaller, thickness increased and spread factor decreased. Hardness of the cookies decreased, and preference was highest for cookies with 5% added Cornus fructus. The preferences for cookies were in the following order: 7% < 3% < 1% < 0% < 5% addition. In conclusion, addition of less than 5% Cornus fructus powder was the most desirable. To complement cookie appearance, it seems necessary to adjust the water content of Cornus fructus powder or add an emulsifier.

Improving Moisture Retention Capacity of Pine Bark by Grinding and Blending with Recycled Rockwool (분쇄와 폐암면의 혼합에 의한 소나무 수피의 보수성 증진)

  • Choi, Jong-Myung;Chung, Hae-Joon;Choi, Jong-Seung
    • The Journal of Natural Sciences
    • /
    • v.11 no.1
    • /
    • pp.131-135
    • /
    • 1999
  • The objective of this research was to improve moisture retention capacity of pine bark. To achieve this, barks were ground with Wiley mill of hammer mill and were blended with recycled rockwool. Then, changes of soil physical properties were determined. The percentage of particles larger than 5.6 mm was 86.5% in raw materials. The percentage of particles larger than 1 mm decreased and those of particles smaller than 1 mm increased by grinding with Wiley mill or hammer mill. Grinding with Wiley mill showed better effect than those of hammer mill in decreasing particle size distribution. Grinding resulted in decreased total porosity (TP) and air space (AS) and increased container capacity (CC) and residual water content (RW), indication improved moisture retention capacity. The material ground with Wiley mill, than blended with 50% recycled rockwool had 81.1%, 67.7%, 13.5% and 235 ml in TP, CC, AS and RW, respectively. These results indicated that moisture retention capacity was improved by blending with recycled rockwood, but aeration of root media was much better than those of peat+vermiculite(1:1, v/v), which is commonly used in commercial production.

  • PDF

Effects of Phosphate and Two-Stage Sous-Vide Cooking on Textural Properties of the Beef Semitendinosus

  • Nurul Nazirah Ruslan;John Yew Huat Tang;Nurul Huda;Mohammad Rashedi Ismail-Fitry;Ismail Ishamri
    • Food Science of Animal Resources
    • /
    • v.43 no.3
    • /
    • pp.491-501
    • /
    • 2023
  • Comparing the effects of sodium tripolyphosphate (STPP) concentrations of 0.2% and 0.4% on beef semitendinosus is the objective of the current investigation. The samples were cooked at varied temperatures (45+60℃ and 45+70℃) and times (1.5+1.5 h and 3+3 h) using staged cooking. The colour properties, cooking loss, water retention, shear force, water-holding capacity, sarcoplasmic, and myofibrillar solubility, and total collagen were investigated. The cooking time and temperature affected the water-holding capacity, cooking loss, CIE L*, CIE a*, CIE b*, myofibrillar, and sarcoplasmic solubility, with lower temperature and short time having the lower detrimental effect. However, the significant effect can be intensified after the addition of STPP with higher water-holding capacity and tender meat obtained with 0.4% phosphate concentration at any cooking conditions. The STPP lowered the collagen content and increased the protein solubility of myofibrillar and sarcoplasmic, which this degradation is used as a good indicator of tenderness.

Utility of Hydrophilic Polymer for Green Technology Development in Green Roofs Using Rainwater (빗물활용 옥상녹화 녹색기술 개발을 위한 친수성 중합체의 효용성)

  • Ju, Jin-Hee;Yang, Ji;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1469-1476
    • /
    • 2012
  • Hydrophilic polymer is suitable as soil conditioners for green roofs that use rainwater, due to promotion of water retention capacity as well as enhancement of the water absorbing capacity. The objective of the present study was to investigate the effects of different levels of hydrophilic polymer concentrations (0, 0.1, 0.2, 0.4, 0.8% w/w) on the water holding capacity and growth response of 6 species in soils amended with hydrophilic polymer in 5 cm of soil thickness on green roofs. The results showed that the water holding capacity of the amended soil improved with increasing amount of applied polymer. The application of 0.8% w/w of the polymer increased the soil moisture by 87% compared to the control, and decreased slowly in green roofs during an arid period. The growth of Sedum spurium 'Dragon's blood' and Lampranthus spectabilis increased significantly and had greater than 60% relative coverage with higher hydrophilic polymer concentrations. However, Juniperus chinensis var. sargentii and Euonymus fortunei var. radicans had no significant differences upon change of hydrophilic polymer concentrations. In Carex kujuzana and Carex morrowii 'Aurea variegata', growth decreased with increase of hydrophilic polymer concentrations. 30 days after planting, Juniperus chinensis var. sargentii, Euonymus fortunei var. radicans, Carex kujuzana, and Carex morrowii 'Aurea variegata' died back due to lowest soil thickness (5 cm), but Sedum spurium 'Dragon's blood' and Lampranthus spectabilis had greater than 90% survival.

Soil water retention and vegetation survivability improvement using microbial biopolymers in drylands

  • Tran, An Thi Phuong;Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.475-483
    • /
    • 2019
  • Vegetation cover plays a vital role in stabilizing the soil structure, thereby contributing to surface erosion control. Surface vegetation acts as a shelterbelt that controls the flow velocity and reduces the kinetic energy of the water near the soil surface, whereas vegetation roots reinforce the soil via the formation of root-particle interactions that reduce particle detachment. In this study, two vegetation-testing trials were conducted. The first trial was held on cool-season turfgrasses seeded in a biopolymer-treated site soil in an open greenhouse. At the end of the test, the most suitable grass type was suggested for the second vegetation test, which was conducted in an environmental control chamber. In the second test, biopolymers, namely, starch and xanthan gum hydrogels (pure starch, pure xanthan gum, and xanthan gum-starch mixtures), were tested as soil conditioners for improving the water-holding capacity and vegetation growth in sandy soils. The results support the possibility that biopolymer treatments may enhance the survival rate of vegetation under severe drought environments, which could be applicable for soil stabilization in arid and semiarid regions.

Development of Standard Analysis Methods for Physical Properties on Korean Bedsoil 2. Water content, Water retention, Saturated hydraulic conductivity (우리나라 상토의 물리적 표준분석법 설정 연구 2. 수분함량, 보수력, 포화수리전도도)

  • Kim, Lee-Yul;Jung, Kang-Ho;Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.6
    • /
    • pp.335-343
    • /
    • 2002
  • Methods of bedsoil analysis were difficult to be applied universally because use and material of bedsoil are diverse from country to country. Korean Standard Methods for Bedsoil Analysis was developed to measure the water content, water retention, and saturated hydraulic conductivity. Fifty-three samples for horticultural bedsoil and nine samples for paddy rice bedsoil in the current market were collected. Water content of bedsoil was determined using gravimetric method through $105^{\circ}C$ oven-dry for 16 hours, but different calculations between horticultural and paddy rice bedsoils were chosen according to different predominant component, plant residue or mineral. Water content percentage of horticultural bedsoil was calculated as [(weight of sample before oven-dry - weight of sample after oven-dry)/(weight of sample before oven-dry)]${\times}100$, while that of paddy rice bedsoil as [(weight of sample before oven-dry - weight of sample after oven-dry)/(weight of sample after oven-dry)]${\times}100$. Water retention was measured at water potential -0.5, -1, -3, -5, -7, -10 kPa by Sandbox method and saturated hydraulic conductivity was measured by constant head method using acryl cylinder (${\Phi}5cm{\times}L\;20cm$). By new 'Korean Standard Methods of Bedsoil Analysis', the average water content of horticultural bedsoil was obtained 46.34%(w/w) and that of paddy rice bedsoil 16.89%. For horticultural bedsoil, easily available water(EAW), water buffering capacity(WBC), and optimal matric potential(OMP) was estimated at 28.4%, 7.01%, and -5.60 kPa, respectively. Optimal moisture content was 44.41% and average saturated hydraulic conductivity for bedsoils was estimated at $28.4cm\;min^{-1}$.