• Title/Summary/Keyword: water-reducing

Search Result 2,780, Processing Time 0.025 seconds

Analysis of loss of cooling accident in VVER-1000/V446 spent fuel pool using RELAP5 and MELCOR codes

  • Seyed Khalil Mousavian;Amir Saeed Shirani;Francesco D'Auria
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3102-3113
    • /
    • 2023
  • Following the Fukushima nuclear disaster, the simulation of accidents in the spent fuel pool has become more noticeable. Despite the low amount of decay heat power, the consequences of the accidents in a spent fuel pool (SFP) can be severe due to the high content of long-lived radionuclides and lack of protection by the pressure vessel. In this study, the loss-of-cooling accident (LOFA) for the VVER-1000/V446 spent fuel pool is simulated by employing RELAP5 and MELCOR 1.8.6 as the best estimate and severe accident analysis codes, respectively. For two cases with different total power levels, decay heat of spent fuels is calculated by ORIGEN-II code. For modeling SFP of a VVER-1000, a qualified nodalizations are considered in both codes. During LOFA in SFP, the key sequences such as heating up of the pool water, boiling and reducing the water level, uncovering the spent fuels, increasing the temperature of the spent fuels, starting oxidation process (generating Hydrogen and extra power), the onset of fuel melting, and finally releasing radionuclides are studied for both cases. The obtained results show a reasonable consistency between the RELAP5 and MELCOR codes, especially before starting the oxidation process.

Influence of Companion Planting on Microbial Compositions and Their Symbiotic Network in Pepper Continuous Cropping Soil

  • Jingxia Gao;Fengbao Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.760-770
    • /
    • 2023
  • Continuous cropping obstacles have become a serious factor restricting sustainable development in modern agriculture, while companion planting is one of the most common and effective methods for solving this problem. Here, we monitored the effects of companion planting on soil fertility and the microbial community distribution pattern in pepper monoculture and companion plantings. Soil microbial communities were analyzed using high-throughput sequencing technology. Companion plants included garlic (T1), oat (T2), cabbage (T3), celery (T4), and white clover (T5). The results showed that compared with the monoculture system, companion planting significantly increased the activities of soil urease (except for T5) and sucrase, but decreased catalase activity. In addition, T2 significantly improved microbial diversity (Shannon index) while T1 resulted in a decrease of bacterial OTUs and an increase of fungal OTUs. Companion planting also significantly changed soil microbial community structures and compositions. Correlation analysis showed that soil enzyme activities were closely correlated with bacterial and fungal community structures. Moreover, the companion system weakened the complexity of microbial networks. These findings indicated that companion plants can provide nutrition to microbes and weaken the competition among them, which offers a theoretical basis and data for further research into methods for reducing continuous cropping obstacles in agriculture.

Polarization Behavior and Corrosion Inhibition of Copper in Acidic Chloride Solution Containing Benzotriazole

  • Sang Hee Suh;Youngjoon Suh
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.137-152
    • /
    • 2023
  • Polarization behavior and corrosion inhibition of copper in acidic chloride solutions containing benzotriazole were studied. Pourbaix diagrams constructed for copper in NaCl solutions with different BTAH concentrations were used to understand the polarization behavior. Open circuit potential (OCP) depended not only on chloride concentration, but also on whether a CuBTA layer was formed on the copper surface. Only when the (pH, OCP) was located well in the CuBTA region of the Pourbaix diagram, a stable corrosion inhibiting CuBTA layer was formed, which was confirmed by X-ray Photoelectron Spectroscopy (XPS) and a long-term corrosion test. The OCP for the CuBTA layer decreased logarithmically with increasing [Cl-] activity in the solution. A minimum BTAH concentration required to form a CuBTA layer for a given NaCl concentration and pH were determined from the Pourbaix diagram. It was found that 320 ppm BTAH solution could be used to form a corrosion-inhibiting CuBTA layer inside the corrosion pit in the sprinkler copper tube, successfully reducing water leakage rate of copper tubes. These experimental results could be used to estimate water chemistry inside a corrosion pit.

Optimization of mineral admixtures and retarding admixture for high-performance concrete by the Taguchi method

  • Chao-Wei Tang
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.185-206
    • /
    • 2023
  • This article aimed to explore the optimization of mineral admixtures and retarding admixture for high-performance concrete. In essence, fresh concrete can be regarded as a mixture in which both coarse and fine aggregates are suspended in a cement-based matrix paste. Based on this view, the test procedure was divided into three progressive stages of binder paste, mortar, and concrete to explore their rheological behavior and mechanical properties respectively. At each stage, there were four experimental control factors, and each factor had three levels. In order to reduce the workload of the experiment, the Taguchi method with an L9(34) orthogonal array and four controllable three-level factors was adopted. The test results show that the use of the Taguchi method effectively optimized the composition of high-performance concrete. The slump of the prepared concrete was above 18 cm, and the slump flow was above 50 cm, indicating that it had good workability. On the other hand, the 28-day compressive strength of the hardened concretes was between 31.3-59.8 MPa. Furthermore, the analysis of variance (ANOVA) results showed that the most significant factor affecting the initial setting time of the fresh concretes was the retarder dosage, and its contribution percentage was 62.66%. On the other hand, the ANOVA results show that the most significant factor affecting the 28-day compressive strength of the hardened concretes was the water to binder ratio, and its contribution percentage was 79.05%.

A Comparison of Dynamic Analysis for the Flexible Riser in Shallow Water (천해에서 유연라이저의 동적해석 결과 비교)

  • Jo, Chul-Hee;Kim, Do-Youb;Rho, Yu-Ho;Kim, In-Ho
    • Journal of Coastal Disaster Prevention
    • /
    • v.1 no.4
    • /
    • pp.149-155
    • /
    • 2014
  • Flexible risers have been used extensively in recent years for floating and early production systems. Such risers offer the advantage of having inherent heave compliance in their catenary thereby greatly reducing the complexity of the riser-to-rig and riser-to subsea interfaces. Another advantage with flexible risers is their greater reliability. Concerns about fatigue life, gas permeation and pigging of lines have been overcome by extensive experience with these risers in production applications. In this paper, flexible riser analysis results were compared through coupled and uncoupled dynamic analyses methods. A time domain coupled analysis capability has been developed to model the dynamic responses of an integrated floating system incorporating the interactions between vessel, moorings and risers in a marine environment. For this study, SPM (Single Point Mooring) system for an FSU in shallow water was considered. This optimization model was integrated with a time-domain global motion analysis to assess both stability and design constraints of the flexible riser system.

Effects of wilting on silage quality: a meta-analysis

  • Muhammad Ridla;Hajrian Rizqi Albarki;Sazli Tutur Risyahadi;Sukarman Sukarman
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1185-1195
    • /
    • 2024
  • Objective: This meta-analysis aimed to evaluate the impact of wilted and unwilted silage on various parameters, such as nutrient content, fermentation quality, bacterial populations, and digestibility. Methods: Thirty-six studies from Scopus were included in the database and analyzed using a random effects model in OpenMEE software. The studies were grouped into two categories: wilting silage (experiment group) and non-wilting silage (control group). Publication bias was assessed using a fail-safe number. Results: The results showed that wilting before ensiling significantly increased the levels of dry matter, water-soluble carbohydrates, neutral detergent fiber, and acid detergent fiber, compared to non-wilting silage (p<0.05). However, wilting significantly decreased dry matter losses, lactic acid, acetic acid, butyric acid, and ammonia levels (p<0.05). The pH, crude protein, and ash contents remained unaffected by the wilting process. Additionally, the meta-analysis revealed no significant differences in bacterial populations, including lactic acid bacteria, yeast, and aerobic bacteria, or in vitro dry matter digestibility between the two groups (p>0.05). Conclusion: Wilting before ensiling significantly improved silage quality by increasing dry matter and water-soluble carbohydrates, as well as reducing dry matter losses, butyric acid, and ammonia. Importantly, wilting did not have a significant impact on pH, crude protein, or in vitro dry matter digestibility.

A Study on the Effect of Abelmoschus Manihot Jinhuakui Extract on Odor Reduction

  • Gok Mi Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.1
    • /
    • pp.281-286
    • /
    • 2024
  • With the commercialization and full-timeization of the livestock industry, civil complaints continue to increase, and the livestock industry is facing a crisis due to social problems such as odor caused by livestock manure, soil pollution, water pollution, and environmental pollution. In order to increase productivity in livestock farms, the amount of livestock manure generated is increasing due to excessive use of protein feed and high-density breeding environment, and complaints such as odor and water pollution due to management problems are increasing rapidly. Livestock odor has emerged as a serious social problem, and due to growing complaints, conflicts between the Ministry of Agriculture and Forestry and the Ministry of Environment are even causing the livestock industry to lower its status. There is an urgent need for solutions to identify problems in the livestock industry and improve policies. This study aims to develop a " Abelmoschus Manihot Jinhuakui " brand that can improve the intestinal environment of livestock, reduce odors caused by livestock excrement, and improve the productivity of livestock farms in order to improve the increasingly serious odor problem in livestock sites. For Jeju livestock farms, which place more importance on the environment by securing tourists, eco-friendly feed additives were applied to the experiment, the results were derived, and the focus was on solving fundamental problems of odor generation through the development and packaging of feed additive brands. We aim to fundamentally solve the odor problem of domestic livestock farms, secure eco-friendly livestock farms, and contribute to reducing livestock odors and increasing productivity through research results that reduce ammonia levels in each livestock farm.

Farmers' Acceptance Intentions for Automated Irrigation Systems (자동물꼬장치에 대한 농업인의 수용의도 분석)

  • Ji-Min Seo;Ju-Young An;Geum-Yeong Hwang;Ji-Bum Um
    • Journal of Agricultural Extension & Community Development
    • /
    • v.31 no.2
    • /
    • pp.85-101
    • /
    • 2024
  • Globally, technologies and policies are being developed to reduce greenhouse gas emissions. In agriculture, there's increasing interest in reducing methane emissions from paddy fields by improving water management practices. While automated irrigation systems are being developed, research on farmers' adoption intentions is lacking. This study aims to examine factors influencing farmers' acceptance of these systems using the UTAUT2 model. Results show that effort expectancy, facilitating conditions, price value, and user innovativeness positively influence acceptance intention, while perceived risk and innovation resistance negatively impact it. User innovativeness partially mediates the effects of facilitating conditions, price value, perceived risk, and innovation resistance on acceptance intention. Policy implications are proposed to promote the adoption of automated irrigation systems.

Development of supporting platform for the fine flow characteristics of reactor core

  • Hao Qian;Guangliang Chen;Lei Li;Lixuan Zhang;Xinli Yin;Hanqi Zhang;Shaomin Su
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1687-1697
    • /
    • 2024
  • This study presents the Supporting platform for reactor fine flow characteristics calculation and analysis (Cilian platform), a user-friendly tool that supports the analysis and optimization of pressurized water reactor (PWR) cores with mixing vanes using computational fluid dynamics (CFD) computing. The Cilian platform allows for easy creation and optimization of PWR's main CFD calculation schemes and autonomously manages CFD calculation and analysis of PWR cores, reducing the need for human and computational resources. The platform's key features enable efficient simulation, rapid solution design, automatic calculation of core scheme options, and streamlined data extraction and processing techniques. The Cilian platform's capability to call external CFD software reduces the development time and cost while improving the accuracy and reliability of the results. In conclusion, the Cilian platform exemplifies an innovative solution for efficient computational fluid dynamics analysis of pressurized water reactor (PWR) cores. It holds great promise for driving advancements in nuclear power technology, enhancing the safety, efficiency, and cost-effectiveness of nuclear reactors. The platform adopts a modular design methodology, enabling the swift and accurate computation and analysis of diverse flow regions within core components. This design approach facilitates the seamless integration of multiple computational modules across various reactor types, providing a high degree of flexibility and reusability.

Effect of Paprika Powder on the Antioxidant Capacity of Emulsion-Type Sausages

  • Yu-Na Oh;Hyung-Youn Choi;Yong-Bin Kim;Seong-Geon Hong;Hack-Youn Kim
    • Food Science of Animal Resources
    • /
    • v.44 no.5
    • /
    • pp.1126-1141
    • /
    • 2024
  • Antioxidant activity of freeze-dried paprika powder and storage properties of emulsion-type pork sausages containing diverse concentrations of this powder (0%, 1%, 2%, and 3%) were analyzed. Antioxidant activities of red and yellow paprika powders were analyzed by evaluating their 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, ferric reducing antioxidant power (FRAP), total phenol content (TPC), and total flavonoid content (TFC). The yellow paprika powder exhibited remarkably higher DPPH radical scavenging activity, FRAP values, and TPC than the red paprika powder (p<0.05), while TFC showed no remarkable difference between them (p>0.05). Storage properties of sausages containing the yellow paprika powder were analyzed by evaluating their water holding capacity, cooking yield, and thiobarbituric acid reactive substance (TBARS), and volatile basic nitrogen (VBN) values. The 3% yellow paprika powder group showed remarkably higher water-holding capacity and cooking yield compared to the 0% group (p<0.05). TBARS values were remarkably lower in the 2% and 3% yellow paprika powder groups than in the 0% group at all weeks (p<0.05). VBN value was remarkably lower in the 3% yellow paprika powder group than in the 0% group at all weeks (p<0.05). Overall, addition of 3% yellow paprika powder improved the storage properties of emulsion-type sausages.