• Title/Summary/Keyword: water-reducing

Search Result 2,781, Processing Time 0.033 seconds

Numerical Investigation of Pressure Fluctuation Reducing in Draft Tube of Francis Turbines

  • Li, WF;Feng, JJ;Wu, H;Lu, JL;Liao, WL;Luo, XQ
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.202-208
    • /
    • 2015
  • For a prototype turbine operating under part load conditions, the turbine output is fluctuating strongly, leading to the power station incapable of connecting to the grid. The field test of the prototype turbine shows that the main reason is the resonance between the draft tube vortex frequency and the generator natural vibration frequency. In order to reduce the fluctuation of power output, different measures including the air admission, water admission and adding flow deflectors in the draft tube are put forward. CFD method is adopted to simulate the three-dimensional unsteady flow in the Francis turbine, to calculate pressure fluctuations in draft tube under three schemes and to compare with the field test result of the prototype turbine. Calculation results show that all the three measures can reduce the pressure pulsation amplitude in the draft tube. The method of water supply and adding flow deflector both can effectively change the frequency and avoid resonance, thus solving the output fluctuation problem. However, the method of air admission could not change the pressure fluctuation frequency.

Comparison of Immunomodualtory Effects of Water-extracted Ginseng Radix, Pilose Asia-bell, Astragali Radix, Astractylodes Rhizoma alba and Dioscoreae Rhizoma (대표적 보기약인 인삼, 당삼, 황기, 백출, 산약 물추출액의 면역조절효과 비교)

  • Shin Sang Woo;Lee Young Sun;Park Jong Hyun;Kwon Taeg Kyu;Suh Seong Il;Kwon Young Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1140-1146
    • /
    • 2004
  • This study was carried out to investigate the comparison of immunomodualtory effects of water-extracted Ginseng Radix(GR), Pilose Asia-bell(PA), Astragali Radix(AR), Astractylodes Rhizoma alba(AA) and Dioscoreae Rhizoma (DR). The parameter examined to assess apparent immunomodulatory effect of the water-extracted GR, PA, AR, AA and DR included the regulation of Nitric oxide (NO), the expression of Th1/Th2 type cytokine, the change of B cell phenotype. The water-extracted GR, PA, AR, AA and DR inhibited NO production and iNOS protein expression in LPS stimulated RAW 264.7 macrophage cells. In the Th1 and Th2 cytokine expression, the water-extracted GR, PA, AR, AA and DR induced IL-2 and IFNr mRNA gene expression. Therefore, it seems that the water-extracted GR, PA, AR, AA and DR have a inducing effect of Th1 type cytokines. In the Flow cytometry analysis, the water-extracted GR, PA, AR, AA and DR did not change B cell phenotype (CD45R/B220). The water-extracted GR, PA, AR, AA and DR have a reducing effect of immune suppression cause by Methotrexate (MTX), an agent of immune suppression. These results suggest that the immunomodulatory effects of the water-extracted GR, PA, AR, AA and DR may be, in part, associated with the inducing IL-2 and IFNr mRNA gene expression in and regulation of NO production in macrophage cells.

The Degumming and Sericin Recovery of the Silk fabric Using the Electrolytic Water (전해수를 이용한 견섬유 정련 및 세리신 회수 (I))

  • 배기서;하헌주;박광수
    • Textile Coloration and Finishing
    • /
    • v.14 no.4
    • /
    • pp.249-258
    • /
    • 2002
  • Natural silk is formed by two proteins : the crystalline fibroin (inside the silk thread) and amorphous sericin (as a tube outside the thread). The degumming process is used to eliminate the external sericin prior to dyeing ; generally it makes use of soaps at about pH 10. Sericin is the protein constituent that "gums"together the fibroin filaments of cocoon silk. It constitutes about 25% of the weight of the cocoon, is soluble in hot water and "gels" on cooling. The removal of sericin from raw silk, known as degumming, is a simple but important process usually employing hot dilute soap or alkaline solution and occasionally dilute acids or enzymic methods. During degumming, alkali is taken up by the sericin and the free acid from the soap is formed ; this may be deposited on the fiber, reducing the rate of degumming and protecting it from hydrolysis. Alkali is often added to maintain or restore the pH of the baths, but it is rarely used alone, since it leaves the silk rather harsh in handle. If complete sericin removal is required as for printing, sodium carbonate may be added. If the pH of the bath exceeds 11, the fibroin is attacked. Recently, According to the development of electrolysis, we can be obtained the electrolytic reduction water(above pH 11.5) and electrolytic oxidation water (below pH 3). The aim of this work was to study a degumming process using electrolytic water and a possibility of sericin recovery. The new degumming process used electrolytic water operates at $95^\circ{C}$ for 2hr. without any reagents. The wastewater of this process are formed by a solution of sericin in water. This conditions suggest the study of a possible recovery of this protein (sericin) which has an amino acid composition suitable for many used in cosmetics, textile finishing agents, animal feeding, etc. The degumming process using electrolytic water is available to reduce treatment costs and pollute and at the same time to recover sericin.

Analysis of Nutrient Dynamics and Development of Model for Estimating Nutrient Loading from Paddy Field

  • Jeon, Ji-Hong;Yoon, Chun-G.;Hwang, Ha-Sun;Jung, Kwang-Wook
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.57-69
    • /
    • 2003
  • To evaluate nutrient dynamics with different fertilization in paddy field and develop water quality model, mass balance analysis was performed during growing season of 2001-2002 in field experimental plots irrigated with groundwater. As a result of water balance analysis, most of outflow was surface drainage as about half of total outflow and about 500mm was lost by evapotranspiration. The water budget was well balanced. The runoff from paddy field was influenced by rainfall and forced drain. Especially runoff during early cultural periods more depends on the forced drain. As a result of mass balance analysis, most of nutrient was input by fertilization and lost by plant uptake. Significant amount of nitrogen were supplied by precipitation and input from upper paddy field, comprising 12%∼28% of total inflow. Nutrient loading by surface drainage was occurred showing about 15%∼29% for T-N and 6%∼13% for T-P. The response of rice yield with different fertilization was not significant in this study. Water quality model for paddy field developed using Dirac delta function and continuous source was calibrated and validated to surface water quality monitoring data. It demonstrates good agreement between observed and simulated. The nutrient concentration of surface water at paddy field was significantly influenced by fertilization. During early cultural periods when significant amount of fertilizer was applied, surface drainage from paddy field can cause serious water quality problem. Therefore, reducing surface drainage during fertilization period can reduce nutrient loading from paddy fields. Shallow irrigation, raising the weir height in diked rice fields, and minimizing forced surface drainage are suggested to reduce surface drainage outflow.

Antioxidant Activity and Cytotoxicity Effect of Extracts from Taraxacum mongolicum H. (민들레 추출물의 항산화 활성 및 세포독성 효과)

  • Heo, Seong-Il;Wang, Myeong-Hyeon
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.3
    • /
    • pp.255-259
    • /
    • 2008
  • This study was investigated antioxidant and anticancer activity of water, methanol extract from upper and root part of Taraxacum mongolicum H. Total phenolic compound contents of methanol and water extracts from upper part were $51.95{\pm}0.18$ mg/g and $48.16{\pm}0.89$ mg/g respectively, and total flavonoid compound contents were estimated as $20.57{\pm}1.12$ mg/g in methanol extract and $6.55{\pm}1.20$ mg/g in water extract. $EC_{50}$ values for DPPH radical scavenging activity of methanol and water extract from upper part were $138.47{\pm}3.78{\mu}g/mL$ and $204.38{\pm}5.32{\mu}g/mL$, and methanol and water extracts from root part were as $512{\pm}8.11{\mu}g/mL$ in methanol extract and $1315.05{\pm}11.98{\mu}g/mL$ in water extract. Reducing power and hydroxyl radical $({\bullet}OH)$ scavenging activity estimated that methanol extract of each part were higher than water extracts. The cell viability showed that the methanol extract from upper part had a cytotoxicity in the growth of colon carcinoma cell (44.58%). Both water extract $(51.97{\pm}11.43%)$ from upper part and methanol $(53.46{\pm}19.77%)$, water $(52.79{\pm}13.53%)$ extracts from root part had quite higher cytotoxicity than that of methanol extract $(88.25{\pm}2.02%)$ from upper part. Based on the results, It was suggested that the methanol extract of Taraxacum mongolicum H. were potential materials for use as functional food and medicine.

Establishment of Washing Conditions for Salad to Reduce the Microbial Hazard (샐러드의 미생물학적 위해 감소를 위한 세척 조건 확립)

  • Kim, Jeong-Weon;Kim, Soo-Hee
    • Korean journal of food and cookery science
    • /
    • v.21 no.5
    • /
    • pp.703-708
    • /
    • 2005
  • The purposes of this study were to establish washing conditions for vegetable salad to reduce the microbial hazard by using sodium hypochlorite solution and eventually to implement HACCP for salad processing. By using the salad production line of Shinkeum Co. located in Gwacheon, Gyunggi-do, salad samples were washed under several washing conditions (chlorine dip period, chlorine concentration, rinse time, etc.) to determine the most effective conditions. The original washing line consisted of 3 baths (100 ppm chlorine water dip, water rinse, and water rinse), each with a capacity of 100 L of tap water and 5 kg of salad. First, the salad samples were washed with 100 ppm of sodium hypochlorite solution for various dip times (3, 6, 9, 12 min); however, only a 1 log- or less-reduction in total microbial counts was achieved in all groups and the time of chlorine water dip was not a significant factor in reducing the microbial hazard. When another water bath was added before the chlorine water dip (4-bath washing), a 2 log-reduction in total microbial counts was achieved. This result suggested the importance of pre-dipping salad materials in water before chlorine treatment to reduce the organic load on the surface of the vegetables. Coliforms were not detected at all after washing. As the concentration of chlorine $(50{\sim}150\;ppm)$ and rinse time $(0.5{\sim}2\;min)$ increased, greater microbial reduction was achieved; however, physical damage of the salad was observed. Finally, the optimum washing conditions for salad were determined as 3 min-water dip, 3 min-chlorine (100 ppm) dip, 2 min-rinse, and 2 min-rinse.

Recent Progress in Qantum Dots Containing Thin Film Composite Membrane for Water Purification (양자점이 합체된 복합 박막을 이용한 정수의 최근 발전)

  • Park, Shinyoung;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.293-306
    • /
    • 2020
  • Increasing harmful effects of climate change, such as its effect on water scarcity, has led to a focus on developing effective water purification methods to obtain pure water. Additionally, rising levels of water pollution is increasing levels of environmental degradation, calling for sources of water treatment to remove contaminants. To purify water, osmotic processes across a semipermeable membrane can take place, and recent studies are showing that incorporating nanoparticles, including carbon quantum dots (CQDs), graphene carbon dots (GQDs), and graphene oxide quantum dots (GOQDs) are making thin film composite (TFC) membranes more effective by increasing water flux while maintaining similar levels of salt rejection, increasing the hydrophilicity of the membrane surface, showing bactericidal properties, exhibiting antifouling properties to prevent accumulation of bacteria or other microorganisms from reducing the effectiveness of the membrane, and more. In the review, the synthesis process, applications, functionality, properties, and the role of several types of quantum dots are discussed in the composite membrane for water purification.

Comparison of Immunomodualtory Effects of Water-extracted Aconiti lateralis Preparata Radix, Zingiberis Rhizoma, Cinnamomi Cortex and Evodiae Fructus (온리약인 부자, 건강, 육계, 오수유의 면역조절효과 비교)

  • Son, Gil-Hyun;Shin, Sang-Woo;Kwon, Young-Kyu;Kim, Sang-Chan;Park, Jong-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.4
    • /
    • pp.1000-1010
    • /
    • 2005
  • This study was carried out to investigate the comparison of immunomodualtory effects of water-extracted Aconiti lateralis Preparata Radix(PR), Zingiberis Rhizoma(ZR), Cinnamomi Cortex(CC) and Evodiae Fructus(EF). The parameter examined to assess apparent immunomodulatory effect of the water-extracted PR, ZR, CC and EF included the regulation of Nitric oxide (NO). Also, ZR and EF represent the expression of Th1/Th2 type cytokine, the change of B cell phenotype. The water-extracted PR, ZR, CC and EF inhibited NO production and iNOS protein expression in LPS stimulated RAW 264.7 macrophage cells. In the Th1 and Th2 cytokine expression, the water-extracted ZR and EF induced IL-2, IFNr and IL-10 mRNA gene expression. Therefore, it seems that the water-extracted ZR and EF have a inducing effect of Th1 and Th2 type cytokines. In the Flow cytometry analysis, the water-extracted ZR and EF changed B cell phenotype (CD45R/B220), did NOT in PR and CC. The water-extracted PR, ZR, CC and EF have a reducing effect of immune suppression cause by Methotrexate (MTX), an agent of immune suppression. These results suggest that the immunomodulatory effects of the water-extracted ZR and EF may be, in part, associated with the inducing IL-2 and IFNr mRNA gene expression In and regulation of NO production in macrophage cells.

Antioxidant Effects and Anti-inflammation Effects of Lophatheri Herba Water Extracts Via Reducing iNOS Synthesis Induced by LPS in RAW 264.7 Cell (담죽엽의 항산화 효과와 RAW 264.7 세포에서 LPS로 유도된 iNOS 발현에 미치는 영향)

  • Hwang, Sung-Yeoun;Lee, Sung-Won;Kwon, Kang-Beom;Choi, Won-Jong;Kim, Jae-Hyo;Ahn, Seong-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.6
    • /
    • pp.976-982
    • /
    • 2010
  • We studied to know the anti-inflammation effect on water extracts of Lophatheri Herba which was growing in every places in our country. We objected free radical scanvenger effect and nitrite eliminate effect of the Lophatheri Herba water extracts, and the cell viabillity, the effects of Lophatheri Herba water extracts on NO production, iNOS synthesis induced by LPS. Free radical scavenger effects were $27.91{\pm}0.12%$, $38.96{\pm}0.10%$, $46.22{\pm}0.15%$ depend on 0.5, 1.0, 2.0 mg/ml each dose of Lophatheri Herba water extracts. Nitrite eliminate effects were $9.86{\pm}0.3%$, $80.61{\pm}0.23%$, $97.62{\pm}0.56%$ in 0.1, 1.0, 2.0 mg/ml Lophatheri Herba water extracts on pH 1.2. NO production and iNOS synthesis induced by LPS were reduced in RAW 264.7 cell by Lophatheri Herba water extracts. As the above results, Lophatheri Herba water extracts have anti-inflammation effects via NO production decrease, iNOS synthesis decrease mechanism. So Lophatheri Herba water extracts will be used as the protection or treatment in chronic inflammation desease like a asthma, stomatitis etc.

Utilizing the grazing effect of fresh water clams (Unio douglasiae) for the remediation of algal bloom during summer

  • Nam, Ki-Woong;Lee, Jeong-Ryul;Park, Kyung-Il
    • The Korean Journal of Malacology
    • /
    • v.31 no.1
    • /
    • pp.61-67
    • /
    • 2015
  • The occurrence of 'algal bloom', caused by the mass proliferation of phytoplankton, causes serious problems in streams and lakes in Korea. Therefore, in this study, the phytoplankton filter-feeding trait of Unio douglasiae, a type of freshwater clam, was used to reduce the algal bloom in outdoor water tanks during the summer. This involved the construction of a U. douglasiae cultivation apparatus, wherein 1,000 clams were divided into 8 rectangular baskets arranged in the shape of an empty square. The control tank was manufactured in exactly the same shape within the water tank, but without the addition of clams. The algal bloom-reducing effect of U. douglasiae was confirmed by the measurement of (and comparing between) the water quality at the center and periphery of the test and control cultivation apparatus. Water quality measurements included the measurement of water temperature, pH, turbidity, dissolved oxygen (DO) content, and chlorophyll-${\alpha}$ concentrations; the water quality was measured twice a month between June and November 2014.The results of these analyses did not show a significant difference in water quality (temperature, pH, turbidity, DO) between the center and periphery of the test and control tanks. However, the chlorophyll-${\alpha}$ concentration was observed to be much lower at the center of the test tank compared to that at the center and periphery of the control tank, as well as at the periphery of the test tank. This was believed to be a result of the U. douglasiae surrounding the center of the test tank, which prevented the influx of plankton from the periphery. Accordingly, the results of these analyses suggest the possibility that U. douglasiae cultivation could reduce the proliferation of algal blooms in lakes and streams during the summer. In particular, these results indicate possible improvements in U. douglasiae activity (reduction in algal blooms) by their effective arrangement in the water bodies.