• Title/Summary/Keyword: water-reducing

Search Result 2,780, Processing Time 0.036 seconds

Effect of Removed Peel from Sweet Persimmon on Nutritional Ingredients and Antioxidant Activities (단감의 박피가 영양성분 및 항산화 활성에 미치는 영향)

  • Lee, Soo-Jung;Ryu, Ji-Hyun;Kim, Ra-Jeong;Lee, Hyun-Ju;Sung, Nak-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.10
    • /
    • pp.1495-1502
    • /
    • 2010
  • This study was for the industrial application of functional food ingredients from whole fruits of sweet persimmon. Whole fruit and pulp of sweet persimmons were divided, and then lyophilized and powdered. Contents of crude fiber, vitamin C, and mineral were significantly higher in whole fruit than pulp of sweet persimmon. The amino acid content of whole fruit was 1.4 times higher than those of sweet persimmon pulp. In the biological activities of water and ethanol extracts from whole fruit and pulp of sweet persimmon, ethanol extract was higher than water extract, and whole fruit was higher than its pulp. The result which compared the biological activities of the water and ethanol extract from lyophilized sweet persimmon showed that total phenolic content was significantly higher in whole fruit of sweet persimmon, but flavonoid contents were not significantly different. Especially ABTS, NO radical scavenging activity, reducing power and tyrosinase inhibition activity were significantly higher in whole fruit extract than pulp extract of sweet persimmon. The relatively high content of fiber and vitamin C, and biological activity of whole fruit than pulp of sweet persimmon may be make it preferable as functional food materials for secondary processed goods.

Application of Relative Gravity Surveying and Modeling to Sinkhole Detection (싱크홀 탐지를 위한 상대중력측량과 중력모델링 기법의 활용)

  • Kim, Jinsoo;Lee, Young-Cheol;Lee, Jung-Mo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.267-274
    • /
    • 2017
  • The purpose of this research was to develop and present methods to detect sinkholes which can exist underneath the surface of the ground. First, we buried a water tank with dimensions $1.8{\times}0.8{\times}0.8m$ at a distance of 1.8 m from the surface. This played the role of the sinkhole. Secondly, we created a square zone with sides 12 meters away from the buried water tank. Within this zone, we measured the gravity at 1-meter intervals using a Scintrex CG5 relative gravimeter with a resolution of 0.001 mGal. Additionally, we performed three-dimensional (3-D) gravity modeling to calculate the theoretical values of the relative gravity around our model sinkhole. The resulting values for the relative gravity around the sinkhole depended on the method used. The measured effect of gravity was 0.036 mGal and the effect calculated using 3-D modeling was 0.024 mGal. Our results suggest that sinkholes that are similar in size to the water tank used in this study can be detected using relative gravity surveys. Smaller sinkholes can be detected by reducing the intervals between the relative gravity measurements.

Quality and fermentative characteristics of yogurt added with hot water extract of Welsh onion root (파뿌리 열수추출물을 이용한 요구르트의 발효 및 품질특성)

  • Kim, Min-Jeong;Lee, Shin-Ho
    • Food Science and Preservation
    • /
    • v.24 no.3
    • /
    • pp.387-393
    • /
    • 2017
  • The objective of this study was to investigate the effect of hot water extract of Welsh onion root (HEWO) on growth of lactic acid bacteria and fermentative characteristics of yogurt. The physiochemical characteristics of HEWO such as pH, soluble solid, reducing sugar, total polyphenol content and DPPH radical scavenging activity were studied. The lactic bacterial count in brain heart infusion (BHI) broth with HEWO was about 1 log cycle higher than in control for 24 h at $37^{\circ}C$. The pH of yogurt prepared with HEWO (WY100) and 50% HEWO (WY50) was gradually decreased significantly but increased the viscosity of yogurt with increasing HEWO concentration during fermentation. The viable cells of lactic acid bacteria after fermentation for 24 h were 8.03 (control), 8.77 (WY50), 8.84 (WY100) log CFU/mL, respectively. The DPPH radical scavenging activity of yogurt increased with increasing HEWO concentration. Sensory quality of yogurt prepared with HEWO was higher than that of control. The pH and lactic acid bacteria of all tested yogurts decreased during storage for 10 days at $4^{\circ}C$ but lactic bacterial count of yogurt prepared with HEWO maintained $10^8CFU/mL$ during storage. These results indicated the potential use of HEWO as a valuable resource to improve fermentation and functionality of yogurt.

Modelling and Residual Analysis for Water Level Series of Upo Wetland (우포늪 수위 자료의 시계열 모형화 및 잔차 분석)

  • Kim, Kyunghun;Han, Daegun;Kim, Jungwook;Lim, Jonghun;Lee, Jongso;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.66-76
    • /
    • 2019
  • Recently, natural disasters such as floods and droughts are frequently occurred due to climate change and the damage is also increasing. Wetland is known to play an important role in reducing and minimizing the damage. In particular, water level variability needs to be analyzed in order to understand the various functions of wetland as well as the reduction of damage caused by natural disaster. Therefore, in this study, we fitted water level series of Upo wetland in Changnyeong, Gyeongnam province to a proper time series model and residual test was performed to confirm the appropriateness of the model. In other words, ARIMA model was constructed and its residual tests were performed using existing nonparametric statistics, BDS statistic, and Close Returns Histogram(CRH). The results of residual tests were compared and especially, we showed the applicability of CRH to analyze the residuals of time series model. As a result, CRH produced not only accurate randomness test result, but also produced result in a simple calculation process compared to the other methods. Therefore, we have shown that CRH and BDS statistic can be effective tools for analyzing residual in time series model.

A Heat Shock Simulation System for Testing Performance of EWP (EWP 성능 검사를 위한 열 충격 모사시스템)

  • Yoo, Nam-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.553-558
    • /
    • 2019
  • Global auto parts companies are making efforts to develop EWP(: Electric Water Pump) which is one of the core parts of environment friendly car. In eco-friendly automobiles, an independent cooling system is used rather than a cooling system that is linked to an internal combustion engine. Therefore, the research and development of the water pump operating separately from the engine and the related production system are being actively carried out. In order to overcome the shortcoming of EWP of PPS material suitable for injection system, G company which is a global parts company that researches and develops EWP around SUS and is in the process of developing robot-based production equipment for mass production. In this paper, a heat shock simulation system is designed and implemented that works with the robot-based production system to test the performance of the produced EWP. By using this system, it is possible to test the EWP in an virtual environment similar to the actual environment, thereby reducing the defect rate of the product. At the same time, all the data produced during the entire process for testing can be stored, which can be utilized in the future development of CPS(: Cyber Physical System) of EWP system based on big data.

Anti-inflammatory and Antioxidant Effects of Hot Water Extracts from Kaempferia Galanga L (삼내자 열수추출물의 항산화 및 항염 효과)

  • Chan, Ching Yuen Venus;Lee, Ji-An
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.6
    • /
    • pp.218-226
    • /
    • 2019
  • In this study, we investigated the possibility of Kaempferia Galanga(KG) hot water extract on the antioxidant, cytotoxic and anti-inflammatory efficacy as a cosmetic ingredient. Antioxidant effects were evaluated based on DPPH and ABTS radical scavenging activity, FRAP assay, and total polyphenol contents. The MTT assay was used to confirm the cell toxicity in mouse macrophage RAW264.7 cells. Anti-inflammatory effects were also investigated in LPS-induced RAW264.7 cells by measuring secretion of NO, $TNF-{\alpha}$ and iNOS, $TNF-{\alpha}$ mRNA expression level. As a result, DPPH and ABTS radical scavenging activities were increased in a concentration-dependent manner. The ferric reducing antioxidant power(FRAP) was the highest at 5 mg/mL as 24.5 uM. The measurements of total polyphenol content was $1.28{\pm}0.064mg\;GAE/g$. The cytotoxicity of the KG extract results showed no cytotoxicity at concentration of 0.625 to 2.5 mg/mL. In addition, the extract of KG significantly suppressed the LPS-induced nitrite, $TNF-{\alpha}$ secretion and the mRNA expression of iNOS, $TNF-{\alpha}$ in RAW264.7 cells. Taken together, these data suggest that the KG hot water extracts can be used as a safe and functional cosmetic raw material.

Agro-Environmental Observation in a Rice Paddy under an Agrivoltaic System: Comparison with the Environment outside the System (영농형 태양광 시설 하부 논에서의 농업환경 관측 및 시설 외부 환경과의 비교)

  • Kang, Minseok;Sohn, Seungwon;Park, Juhan;Kim, Jongho;Choi, Sung-Won;Cho, Sungsik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.141-148
    • /
    • 2021
  • Agrivoltaic systems, also called solar sharing, stated from an idea that utilizes sunlight above the light saturation point of crops for power generation using solar panels. It is expected that agrivoltaic systems can realize climate smart agriculture by reducing evapotranspiration and methane emission due to the reduction of incident solar radiation and the consequent surface cooling effect and bring additional income to farms through solar power generation. In this study, to evaluate that agrivoltaic systems are suitable for realization of climate smart agriculture, we conducted agro-environmental observations (i.e., downward/upward shortwave/longwave radiations, air temperature, relative humidity, water temperature, soil temperature, and wind speed) in a rice paddy under an agrivoltaic system and compared with the environment outside the system using automated meteorological observing systems (AMOS). During the observation period, the spatially averaged incoming solar radiation under the agrivoltaic system was about 70% of that in the open paddy field, and clear differences in the soil and water temperatures between the paddy field under the agrivoltaic system and the open paddy field were confirmed, although the air temperatures were similar. It is required in the near future to confirm whether such environmental differences lead to a reduction in water consumption and greenhouse gas emissions by flux measurements.

Simulating the Gross Primary Production and Ecosystem Respiration of Estuarine Ecosystem in Nakdong Estuary with AQUATOX (AQUATOX 모델을 이용한 낙동강 하구역의 총일차생산량 및 생물체 호흡량 예측 모델링)

  • Lee, Taeyoon;Hoang, Thilananh;Nguyen, Duytrinh;Han, Kyongsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.3
    • /
    • pp.15-29
    • /
    • 2021
  • The purpose of this study is to establish an ecosystem model that can predict ecosystem fluctuations in the Nakdong estuary, and use this model to calculate total primary production and respiration. AQUATOX model was used as the ecosystem model, and the model was calibrated and verified using the measured data. For the calibration of the model, chlorophyll-a data measured at the Nakdong estuary were used, and the model verification was performed using DO, TN, and TP data. In general, the total primary production and respiration volume vary greatly depending on the season, but the total primary production and respiration in the Nakdong estuary were greatly influenced by the amount of water discharged from Nakdong estuary bank. When the amount of effluent increased, photosynthesis could not be performed due to the loss of phytoplankton living in the lower area, and the total primary production amounted to zero, whereas the respiration increased sharply due to the inflow of organic substances contained in the effluent. The increase in the inflow water means the inflow of organic substances contained in the inflow water, and the organic substances are decomposed by oxidation, reducing dissolved oxygen. Compared with other countries' estuaries, the Nakdong estuary shows the lowest total primary production and because the respiration is larger than the total primary production, the dissolved oxygen is depleted by the oxidation of organic matter.

Strength and Earth Pressure Characteristics of Industrial Disposal Flowable Filling Materials Utilizing Backfiller (뒤채움재로 사용된 산업폐기물 유동화 처리토의 강도 및 토압특성)

  • Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.3
    • /
    • pp.5-13
    • /
    • 2021
  • Due to population growth and industrial development, the amount of industrial waste is increasing every year. In particular, in a thermal power plant using finely divided coal, a large amount of coal ash is generated after combustion of the coal. Among them, fly ash is recycled as a raw material for cement production and concrete admixture, but about 20% is not utilized and is landfilled. Due to the continuous reclamation of such a large amount of coal ash, it is required to find a correct treatment and recycling plan for the coal ash due to problems of saturation of the landfill site and environmental damage such as soil and water pollution. In recent years, the use of a fluid embankment material that can exhibit an appropriate strength without requiring a compaction operation is increasing. The fluid embankment material is a stable treated soil formed by mixing solidifying materials such as water and cement with soil, which is the main material, and has high fluidity before hardening, so compaction work is not required. In addition, after hardening, it is used for backfilling or filling in places where compaction is difficult because higher strength and earth pressure reduction effect can be obtained compared to general soil. In this study, the possibility of use of fluidized soil using high water content cohesive soil and coal ash is considered. And it is intended to examine the flow characteristics, strength, and bearing capacity characteristics of the material, and to investigate the effect of reducing the earth pressure when applied to an underground burial.

Core-shell TiO2/Ag Nanoparticle Synthesis and Characterization for Conductive Paste (전도성 페이스트용 코어-쉘 TiO2/Ag 나노입자의 합성 및 특성 연구)

  • Sang-Bo, Sim;Jong-Dae, Han
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.36-44
    • /
    • 2023
  • Core-shell TiO2/Ag nanoparticles were synthesized by a modified sol-gel process and the reverse micelle method using acetoxime as a reducing agent in water/dodecylbenzenesulfonic acid (DDBA)/cyclohexane. The structure, shape, and size of the TiO2/Ag nanoparticles were investigated using X-ray diffraction (XRD), UV-visible spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), and thermogravimetric analysis (TGA). The size of TiO2/Ag nanoparticles could be controlled by changing the [water]/[DDBA] molar ratio values. The size and the polydispersity of TiO2/Ag nanoparticles increased when the [water]/[DDBA] molar ratio rose. The resultant Ag nanoparticles over the anatase crystal TiO2 nanoparticles exhibited a strong surface plasmon resonance (SPR) peak at about 430 nm. The SPR peak shifted to the red side with the increase in nanoparticle size. Conductive pastes with 70 wt% TiO2/Ag nanoparticles were prepared, and the pastes were coated on the PET films using a screen-printing method. The printed paste films of the TiO2/Ag nanoparticles demonstrated greater surface resistance than conventional Ag paste in the range of 405~630 μΩ/sq.