• Title/Summary/Keyword: water-mist system

Search Result 89, Processing Time 0.022 seconds

An Experimental Evaluation for the Effect of Ventilation Velocity in Subway Train on Performance of a High Pressure Water Mist Fire Suppression (지하철 객차 내 환기 속도가 고압 미세물분무 화재제어 시스템의 성능에 대한 실험평가)

  • Kim, Dong-Woon;Bae, Seung-Yong;Kim, Dong-Suk;Park, Won-Hee;Ryou, Hong-Sun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1307-1312
    • /
    • 2007
  • This experiments are performed to investigate the effect of ventilation velocity on a high pressure water mist fire suppression in subway train. The experiment is conducted in half scale modeled train of a steel-welled enclosure (8.0m*2.4m*2.1m). The ventilation velocity is controlled by the ventilation duct through an inverter in the range of 0 to 2 m/s. The coverage-radius and an injection angle of an high pressure water mist system are measured. The mist nozzle with 7-injection holes is operated with pressure 80 bar. The heptane pool fires are used. The fire extinguishment times and the temperatures are measured for the ventilation velocities. In conclusion, because the momentum of injected water mist is more dominant than that of ventilation air, the characteristics of water mist, the fire extinguishment times and the temperatures are affected very little by ventilation velocity.

  • PDF

A Study on the Smoke-logging Phenomenon caused by Water Mist (Water Mist 분무액적에 의한 스모크-로깅현상에 관한 연구)

  • Yoon, Ung-Gi;Koo, In-Hyeok;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.249-250
    • /
    • 2015
  • This study contemplated the descending air current from the smoke layers related to the smoke logging phenomenon in the Water Mist applied design for effective evacuation safety design. As a result, database on the average particle diameter, particle velocity and distribution of sprinkling was obtained and the relationship between the water amount and particle diameter was obtained. Also Descending smoke velocity was significantly faster to 9.8m/s, it is determined that appeared rapidly by a high water pressure.

  • PDF

Full-scale Fire Suppression Test for Application of Water Mist System in Road Tunnel (미분무수 소화시스템의 도로터널 적용을 위한 실물 화재 실험)

  • Han, Yong-Shik;Choi, Byung-Il;Kim, Myung-Bae;Lee, Yu-Whan;So, Soo-Hyun
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.51-56
    • /
    • 2011
  • The full-scale experiments are carried out to investigate the fire suppression characteristics of water-based fire fighting systems in a road tunnel. Applied systems are the low-pressure water spray system at 3.5 bar and the high-pressure water mist system at 60 bar. The water flow rate of the high-pressure system is one sixth only of the water spray system. A passenger car and a heptane fuel pan with area of $1.4m^2$ are used as fire sources. A blower system is installed at the tunnel exit to realize the longitudinal ventilation conditions (0.9~3.8 m/s) in the tunnel. Temperatures from the fire source to the down-stream direction are measured by K-type thermocouple trees. The experimental results show that the cooling effect of the high pressure water mist system in the test conditions were equivalent to that of the low pressure water spray system for B-class fire.

Performance Tests of Fire Control Using Water Mist in a Coach (미세 물분무를 이용한 객차내의 화재제어 성능시험)

  • Kim, D.H.;Park, W.H.;Jang, J.Y.;Lee, H.S.;Ryou, H.S.;Kang, J.G.;Park, J.Y.
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1814-1818
    • /
    • 2007
  • The Korea Railroad Research Institute developed a fire control system for coaches using water mist. The fire control technology using water mist is used in the fire control system embedded in coaches developed through research. Such environment-friendly, automatic fire-extinguishing device is also economical because the amount used is significantly less than that of the existing sprinkler system. The paper introduces the developed fire control system and fire control performance tests using such system.

  • PDF

Trends of Onboard Fire Extinguishing System (선박용 소화설비의 국제동향)

  • Kim, Mann-Eung
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.126-127
    • /
    • 2005
  • This paper provides information on the current issues and the progress of on-going researches relating onboard fixed fire extinguishing system in the IMO Sub-committee on Fire Protection. And also prepares to introduce the recent amendment to regulations and technical trends of the water mist fire extinguishing system and high expansion foam system.

  • PDF

Performance Comparison of Thermal Imagers with Uncooled and Cooled Detectors For Fire Fighting Application (비냉각형 적외선 센서를 이용한 열상시스템과 냉각형 적외선 센서를 이용한 열상시스템의 화재 진압 시 성능 비교)

  • Kim, Byung-Hyuk;Jung, Han;Kim, Young-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.128-132
    • /
    • 2007
  • Thermal Imaging systems are reported to be crucial for fire fighting and beginning to be used by fire fighters. The performance of thermal imaging system is determined by both the radiation of infrared from the target and the attenuation of infrared signal in the optical path by the absorption, scattering, diffraction and reflection. In the scene of fire, water drops with various sizes such as vaporized water, wafer mist from sprinkler, and wafer to suppress the fire reside with various gas generated by burning. To measure the transmission of infrared radiation in the scene of fire, fire simulating system and thermal imagers with cooled detector which detects $3{\sim}5{\mu}m$ infrared and uncooled detector fabricated by the MEMS technology which detects $8{\sim}12{\mu}m$ infrared. are made. With thermal imagers and Ire simulating system, the change of thermal image with respect to the change of visibility controlled with the burned fas was measured. It was found that the transmission of infrared was not reduced by the burned gas, which could be explained by the long wavelength of infrared ray compared with visible ray. However, the transmission of infrared ray was largely reduced by the combination of burned gas and water mist supplied by sprinkler. This is contrary to the results of calculated transmission through the pure water mist and shows that the transmission of infrared ray is mostly affected by the compounds of water mist and burned gas. In this case, it was found that the uncooled detector which detects $8{\sim}12{\mu}m$ infrared ray is better than cooled detector which detects $3{\sim}5{\mu}m$ infrared ray for fire fighting.

A Fire Scenario for Application of Water Mist System to an Indoor Power Transformer Room (변전소 주변압기실 미분무수 소화시스템 성능평가를 위한 화재시나리오)

  • Choi Byung-Il;Han Yong-Shik;Kim Myung-Bae
    • Fire Science and Engineering
    • /
    • v.19 no.3 s.59
    • /
    • pp.52-57
    • /
    • 2005
  • It has been known that there is not the general design method for water mist system because the fire extinguishing mechanisms are dependent on both spray characteristics and a fire compartment. It is therefore rational that a general performance-evaluation guideline does not exist. The present work suggests the performance-evaluation guideline for water mist system applied to the power transformer room based upon the investigation and analysis of fire accidents and the similar guideline.

Cooling Performance of Air/Water Mist Jet Impinging for a Rapid Thermal Annealing System (급속 열처리 시스템을 위한 물/공기 액적류 충돌 제트의 냉각 특성에 관한 연구)

  • Lee, Jun Kyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.68-74
    • /
    • 2015
  • In the present work, a series of numerical calculations have been conducted on the cooling of a hot surface using an air/water mist jet. In some cooling processes, such as in the glass-tempering process, direct contact between the cold water drops and the hot surface should be avoided, because this may cause surface cracks due to the sharp temperature gradients. Thus, the main focus of this study is finding the appropriate operating conditions for maximum cooling without direct contact between the drops and the surface. A series of numerical experiments have been performed, and, at the same time, those results were compared with those of the previous experiments for verification purposes. The effects of droplet impinging velocity, hot plate temperature, and liquid loading ratio for mono-dispersed drops of various sizes were studied in detail.

An experimental study on development of water mist fire-fighting systems for Ro-Ro spaces (Ro-Ro 구역용 미분무 소화설비의 개발을 위한 실험적 연구)

  • Kwark, Ji-Hyun;Kim, Young-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.946-952
    • /
    • 2013
  • Large scale fire tests were conducted to develop water mist nozzles as a component of fixed water- based fire fighting systems for Ro-Ro spaces and special category spaces. Fire scenarios for this system consist of two cases which are for cargo fire in a simulated truck and for passenger vehicle fire, and each case has 3 different tests according to the position between fixed water mist nozzles and fire source. Every experiment proceeded for 30 minutes and acceptance criteria were based on gas temperature, fuel package's damage and ignition of targets. This study primarily dealt with the experimental results of cargo fire and focused on fire suppression capability in accordance with discharge pressure, flow rate and flow characteristics like swirl and penetration of the developed water mist nozzles. It appeared that low pressure water mist nozzles with about 40 L/min were able to control fire occurred in Ro-Ro spaces.

A Study on the Extinguishing Performance of Water Mist with Additives (첨가제가 혼합된 미세물분무의 소화성능에 관한 연구)

  • 이경덕;신창섭
    • Fire Science and Engineering
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • Halogen-based fire suppressing agents have environmental problems because they cause the stratospheric ozone depletion and globe warming. Hence, fire suppression system using fine water mist became the center of interest as a substitution of halon. As a study about this, it is in progress to make the optimum droplet size by using water mist nozzles and to improve the extinguishing performance of water mist by using additives. Before this study, the extinguishing time of ethanol and n-heptane pool fire was measured with changing of water mist droplet size, flow density, discharge pressure, and fire size. In this study, on adding the additives to improve physical and chemical extinguishing performance of water mist, the extinguishing performance would evaluate and the optimum condition would find out. As a result, in case of ethanol pan 1 pool fire, the extinguishing time of the water mist by adding of 2.5 wt% NaCl and 0.3% AFFF got shorter 27% and 60% than the pure water mist. Adding of AFFF was to decrease the flame temperature by forming thin film on the fuel surface and to decrease the evaporation of n-heptane fuel. In case of NaCl, alkali salt crystals showed on the flame surface.