본 연구에서는 텐서플로우를 이용한 관측자료 기반의 수위예측 연구를 수행하였다. 대상유역은 도림천 유역으로 선정하였으며 관측강우와 상류하천의 수위자료를 이용하여 하류인 도림교지점의 수위를 예측하였으며 다른 변수는 배제하였다. 사용된 모형은 시계열 데이터예측에 우수한 성능을 보이는 RNN(Recurrent Neural Network)과 LSTM(Long Short Term Memory networks)을 이용하였으며 수위자료는 2005년부터 2016년도 10분단위 관측강우와 수위 데이터를 학습하여 2017년도 수위데이터를 예측하도록 하였다. 본 연구를 통하여 홍수기 실시간 수위예측이 가능할것으로 판단되며 도시지역 골든타임 확보에 활용될 것으로 판단된다.
매년 국지성호우 및 태풍으로 인해 하천 범람이나 저지대침수가 발생하고 있으며 이는 인명 피해 사례로 이어지기도 한다. 피해 발생을 최소화시키기 위해 강우와 유량과 같은 정형데이터로 홍수예보가 이뤄지고 있으나 기존의 정형데이터만 사용하다보니 도심지역이나 소규모 하천에서 인명 피해 예측에 어려움이 있다. 이를 보완하기 위해서는 인구의 유동성을 고려한 비정형데이터를 활용해야 한다. 최근 소셜 네트워크 서비스(SNS)의 사용자가 증가됨에 따라 텍스트나 사진과 같은 다양한 비정형데이터가 생성되고 있다. 이렇게 생성된 데이터는 다양한 분야에서 활용되고 있으며 특히 지진이나 홍수와 같은 재난 발생 시 유용한 데이터로 활용된 사례가 증가하고 있다. 이는 사람들이 GIS와 같은 위치정보나 시간 등을 포함한 다양한 정보를 포함하기 때문이다. 하지만 이렇게 생산된 비정형데이터를 기존 물리적 기반의 수문모형의 데이터로 활용하기에는 많은 한계점이 있다. 따라서 본 연구에서는 SNS 채널을 통해 생성된 비정형 데이터들을 인공신경망모형에 적용하여 하천수위를 예측하였다.
홍수로 인한 침수피해 발생을 최소화하기 위해 정확한 하천의 수위 예측과 리드타임 확보가 매우 중요하다. 특히 조석현상의 영향을 받는 감조하천의 경우 기존의 물리적 수문모형의 적용이 제한되어 하천수위 예측의 정확도가 떨어지기도 한다. 따라서 본 연구에서는 이러한 감조하천 수위 예측의 정확도를 높이기 위해 조석현상을 분리하고 인공신경망을 활용하는 하이브리드 모델을 제안 하였으며 다중 선형회귀분석과 비교 분석하였다. 감조하천에 위치한 교량의 수위데이터에서 Stationary Wavelet Transform으로 조석현상을 분리하였으며, 이외의 수위에 영향을 주는 time series data와 인공신경망(ANN)을 활용하여 1시간, 2시간, 3시간 후의 수위를 예측하였다. 하이브리드 모델은 96% 이상의 정확도를 보였으며 다중 선형회귀 분석과 비교하여도 높은 정확성을 보여주었다.
Recently, pollution by development in coastal areas is going from bad to worse. The Korean government is attempting to make policies that prevent water pollution, but it is still difficult to say whether such measures are lowering pollution to an acceptable level. More specifically, the general investigation that has been done in KOREA does not accurately reflect the actual conditions of pollution in coastal areas. An investigation that quantitatively assesses water quality management using rational prediction technology must be attempted, and the ecosystem model, which incorporates both the 3-dimensional hydrodynamic and material cycle models, is the only one with a broad enough scope to obtain accurate results. The hydrodynamic model, which includes advection and diffusion, accounts for the ever-changing flow and (quality) of water in coastal areas, while the material cycle model accounts for pollutants and components of decomposition as sources of the carbon, phosphorus, and nitrogen cycles. In this paper, we simulated the rates of dissolved oxygen (DO), chemical oxygen demand (COD), total nitrogen(T-N) and total-phosphorous(T-P) in Korea's Ulsan Area. Using the ecosystem model, we did simulations using a specific set of parameters and did comparative analysis to determine those most appropriate for the actual environmental characteristics of Ulsan Area. The simulation was successful, making it now possible to predict the likelihood of coastal construction projects causing ecological damage, such as eutrophication and red tide. Our model can also be used in the environmental impact assessment (EIA) of future development projects in the ocean.
하도내에서 발생하는 유출량 및 TOC 자료는 비선형성이 강한 자료임에 따라 홍수에 대한 재난대응과 수질의 상시감시를 위해서는 자료의 특성 분석과 예측에 관한 연구는 필수라 할 수 있다. 따라서 본 연구에서 유출량 및 TOC, TOC부하량 자료에 대한 웨이블렛 변환에 의해 최종분해된 최종파형분해단계의 근사성분과 상세성분을 이용하여 예측모형을 개발하였다. 그 결과 기존 인공신경망 모형에서 관찰되었던 시계반대 방향으로 전이되는 지속현상의 극복 가능성을 보여주었으며, 기존 인공신경망 모형에 비하여 예측의 정확도가 향상됨을 확인할 수 있었다. 이러한 연구결과는 향후 홍수에 대한 피해를 최소화하고 각종 수질사고에 적극적인 대응방안 수립이 가능할 것으로 기대된다.
The improvement of the water level control is important since it will prevent the steam generator trip so that improve the reliability and credibility of operation system. In this paper, the closed loop system identification is performed which can be used for the system monitoring and prediction of the system response. The model also can be used for the prediction control. Irving model is used as a steam generator model. The plant is an open loop unstable and non-minimum phase system. Fuzzy controller stabilize the system and the stable controller stabilize the system and the stable closed loop system is identified using neural networks. The obtained neural network model is validated using the untrained input and output. The results of computer simulation show the obtained Neural Network model represents the closed loop system well.
This paper studied about the measurement method of the instantaneous dynamic load characteristics. this experimental study, we derived the instantaneous washing load characteristics and inertial moment characteristics according to the amount of laundry and water level. Also, this studied about the dynamic driving characteristics simulation method for the prediction of washing performance based on this load characteristics analysis. For this study, the design parameters of the driving motor are obtained by FEM analysis and the experiment. By using theses motor parameters and load characteristics, the instantaneous driving characteristics simulation is accomplished and it is verified with the experimental result of various driving conditions. The results of this paper would be very useful to the prediction of washing mode operation characteristics, and it can be also utilized to the washer motor control algorithm design for the washing performance improvement.
하용에서 수질 시뮬레이숀에 의한 시간적, 공간적 수질예측은 하용 수질관리를 위한 계획수립, 설계 및 모형의 최적화에 필요한 자료를 제공해 준다. 본 연구는 대청댐 하류에서 부여백제대교에 이르는 금강수계에서의 QUAL II 모형의 적용에 관한 것이다. QUAL II모형에서 사용된 물질수지방정식에 근거를 둔 대류-분석모형과 그 수치해석법을 제시하였다. 하용을 따르는 BOD, DO 및 수온의시뮬레이숀괍과 실측값과의 비교분석을 통한 모형의 활용성 제고에 역점을 두었다. 이러한 과정을 통해 금강에서의 하용수질을 평가하고, 탈산소 계수, 재폭기 계수 및 자정계수의 값을 추정하였다. 또한 대청댐 방류량 조절에 의한 목표하는 DO의 유지에 대하여 논의하였다.
기후변화에 따른 집중호우, 태풍 등의 발생빈도의 증가로 인하여 댐 운영의 고도화가 요구되고 있다. 일반적으로 댐 운영의 경우 강우예측, 강우-유출, 홍수추적 등 다양한 수리수문학적 요소들을 반영하여 수행되나 기 계획된 특정 규칙에 기반한 댐 운영 모형의 경우, 때때로 개별 모듈들의 불확실성과 복합적인 인자들로 인하여 댐의 방류량을 능동적으로 제어하는데 제약이 있을 수 있다. 본 연구는 남강댐 직하류 홍수피해 예방을 위하여 댐의 방류량 결정 등 효율적인 댐 운영을 지원하기 위해 딥러닝 기반 LSTM (Long Short-Term Memory) 모형을 구축하고, 선행시간별 댐직하류 수위예측 정확도를 분석하는 것을 목적으로 한다. LSTM 모형의 입력자료는 댐 운영에 사용되는 기초자료 및 하류 장대동 수위관측소의 수위 자료를 시 단위로 2009년부터 2021년 7월까지 수집하였다. 2009년부터 2018년 자료는 모형의 학습과 검증 및 2019년부터 2021년 7월 자료는 선행시간을 7개(1 h, 3 h, 6 h, 9 h, 12 h, 18 h, 24 h)로 구분하여 관측 수위와 예측 수위를 비교·분석하였다. 그 결과, 선행시간 1시간의 예측결과는 평균적으로 MAE가 0.01 m, RMSE가 0.015 m, NSE가 0.99 로 관측 수위에 매우 근접한 예측 결과를 나타내었다. 또한, 선행시간이 길어질수록 예측 정확도는 근소하게 감소하였지만, 관측 수위의 시간적 패턴을 유사하게 안정적으로 예측하는 것으로 분석되었다. 따라서 수리수문학적 비선형의 복잡한 자료간의 특징을 자동으로 추출하여 예측 자료를 생산하는 LSTM 모형은 댐 방류량 의사결정에 있어 활용이 가능할 것으로 판단된다.
A calculation model is developed to predict the transient free surface flow on the containment floor following a loss-of-coolant accident (LOCA) of pressurized water reactors (PWR) for the use of debris transport evaluation. The model solves the two-dimensional Shallow Water Equation (SWE) using a finite volume method (FVM) with unstructured triangular meshes. The numerical scheme is based on a fully explicit predictor-corrector method to achieve a fast-running capability and numerical accuracy. The Harten-Lax-van Leer (HLL) scheme is used to reserve a shock-capturing capability in determining the convective flux term at the cell interface where the dry-to-wet changing proceeds. An experiment simulating a sudden break of a water reservoir with L-shape open channel is calculated for validation of the present model. It is shown that the present model agrees well with the experiment data, thus it can be justified for the free surface flow with accuracy. From the calculation of flow field over the simplified containment floor of APR1400, the important phenomena of free surface flow including propagations and interactions of waves generated by local water level distribution and reflection with a solid wall are found and the transient flow rates entering the Holdup Volume Tank (HVT) are obtained within a practical computational resource.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.