• Title/Summary/Keyword: water-friendly

Search Result 1,248, Processing Time 0.024 seconds

Effect of EFD-1 and PC-10 deicers on Growth of Wheat, Barley and Spinach (대체제설제인 EFD-1과 PC-10의 밀, 보리, 시금치 생육에 미치는 영향)

  • Lee, Dae-Weon
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.1
    • /
    • pp.30-37
    • /
    • 2015
  • BACKGROUND: During the winter, the use of deicers was rapidly increased for reduction of traffic accidents as well as injuries in Korea, whose components are largely comprised of calcium chloride and sodium chloride. Recently, to reduce the adverse effects of chloride-deciers such as pollution of water and soil, and decrease of agricultural productivity, the attention of eco-friendly deciers have been increased. This study aimed to investigate biological effects of magnesium chloride deicer (PC-10) and organic acid deicer (EFD-1) against wheat, barley, and spinach. METHODS AND RESULTS: We examined the effect of two deciers, PC-10 and EFD-1 on the seed germination and growth of wheat, barley and spinach. EFD-1 showed higher suppression of the germination than PC-10 among tested crop seeds. In demage index of the seedlings of the crops, there was no symptoms in spinach such as spotting and color change of leaves. EFD-1 showed much stronger inhibitory effect on the germination of tested crop seeds than PC-10 when crops were exposed continuously to tested deciers in soils. The growth and shoot and root in examined crops was relatively higher in PC-10 treatment than in EFD-1 treatment when compared to the control. The biomass decrease was found in all examined conditions of deciers. PC-10 showed 23-35% reduction of biomass whereas EFD-1 exhibited 39-84% loss in all examined crops at over 2% concentration. CONCLUSION: These results suggest that the effects of deicers used in this study by inputting into soil against growing tested crops cause the reduction of germination of seeds, growth, and biomass compared to the control.

A Study on Sustainable Outdoor Design Strategies and Assessment System through Analysis of SITES Certified Projects (미국 외부공간 친환경 인증(SITES) 사례분석을 통한 친환경 조성기법 및 평가체계 연구)

  • Lee, Hyung-Sook
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.3
    • /
    • pp.56-64
    • /
    • 2016
  • While many assessment systems for buildings and indoor environment have been created with increasing interest in sustainable development, assessments for sustainable landscaping and outdoor environments have received less attention. Recently, the Sustainable Site Initiatives(SITES) was developed in the USA in order to evaluate and certify sustainable landscape design projects. The purposes of this study are to analyze sustainable landscape strategies and to review the certification system through case studies of SITES certified projects. Three certified projects in Texas were selected and literature review, site visits and interview were conducted. The results indicated that various sustainable and practical strategies were applied including soil preservation, use of native plants and recycled materials, and water harvesting. Also, SITES has benefits to encourage an integrated design process, community participation, and environmental education for the public. This suggests that a certification system for landscaping and outdoor environments needs to be developed to ensure sustainable site development, which helps extend the roles of the landscape architecture profession in sustainable design.

Beneficial Roles of Azospirillum as Potential Bioinoculant for Eco-Friendly Agriculture (친환경농업을 위한 유용미생물 Azospirillum의 효율적 이용)

  • Gadagi, Ravi;Park, Myoung-Su;Lee, Hyoung-Seok;Seshadri, Sundaram;Chung, Jong-Bae;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.5
    • /
    • pp.290-303
    • /
    • 2003
  • Modern agriculture has been heavily dependent on chemical fertilizers to meet the food demands of ever increasing population. Progressive depletion of major plant nutrients in soil due to intensive cultivation practices has also necessitated the use of higher dose of chemical fertilizers particularly in soils where the organic matter content is very low. Indiscriminate use of chemical fertilizers and pressure on agriculturists to enhance per area crop yields has led to fast depletion of fossil fuel resources with concomitant increase in the prices of chemical fertilizers and also led to environmental pollution. Hence, the current trend throughout the world is to explore the possibility of using alternate nutrient sources or increasing the efficiency of chemical fertilizers by supplementing them with organic fertilizers and bioinoculants comprising largely microbes like, bacteria, fungi, algae etc to enhance nitrogen and phosphates in the soil thus creating a sustainable agricultural environment. Among the different microbial inoculants or biofertilizers, Azospirillum could be a potential candidate due to its non specific host root colonization. It had the capability to fix $N_2$ in wide pH regimes and even in presence of combined nitrogen. Azospirillum inoculation can increase the crop yield to 10-25% and substitute 25% of recommended doses of nitrogenous fertilizers. Apart from nitrogen fixation, Azospirillum is also involved in the root improvement, the activity which was attributed to an increase in the rate of water and mineral uptake by roots. The ability of Azospirillum to produce phytohormones was reported to enhance the root respiration rate, metabolism and root proliferation. They have also been reported to produce polyhydroxybutyrate, that can be used as a biodegradable thermosplastic. A lot of studies have addressed improvements in enhancing its efficiency to fix nitrogen fixation and hormone production.

Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity

  • Siddiqi, Khwaja Salahuddin;Rashid, M.;Rahman, A.;Tajuddin, Tajuddin;Husen, Azamal;Rehman, Sumbul
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.328-336
    • /
    • 2018
  • Background: Biogenic fabrication of silver nanoparticles from naturally occurring biomaterials provides an alternative, eco-friendly and cost-effective means of obtaining nanoparticles. It is a favourite pursuit of all scientists and has gained popularity because it prevents the environment from pollution. Our main objective to take up this project is to fabricate silver nanoparticles from lichen, Usnea longissima and explore their properties. In the present study, we report a benign method of biosynthesis of silver nanoparticles from aqueous-ethanolic extract of Usnea longissima and their characterization by ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses. Silver nanoparticles thus obtained were tested for antimicrobial activity against gram positive bacteria and gram negative bacteria. Results: Formation of silver nanoparticles was confirmed by the appearance of an absorption band at 400 nm in the UV-vis spectrum of the colloidal solution containing both the nanoparticles and U. longissima extract. Poly(ethylene glycol) coated silver nanoparticles showed additional absorption peaks at 424 and 450 nm. FTIR spectrum showed the involvement of amines, usnic acids, phenols, aldehydes and ketones in the reduction of silver ions to silver nanoparticles. Morphological studies showed three types of nanoparticles with an abundance of spherical shaped silver nanoparticles of 9.40-11.23 nm. Their average hydrodynamic diameter is 437.1 nm. Results of in vitro antibacterial activity of silver nanoparticles against Staphylococcus aureus, Streptococcus mutans, Streptococcus pyrogenes, Streptococcus viridans, Corynebacterium xerosis, Corynebacterium diphtheriae (gram positive bacteria) and Escherichia coli, Klebsiella pneuomoniae and Pseudomonas aeruginosa (gram negative bacteria) showed that it was effective against tested bacterial strains. However, S. mutans, C. diphtheriae and P. aeruginosa were resistant to silver nanoparticles. Conclusion: Lichens are rarely exploited for the fabrication of silver nanoparticles. In the present work the lichen acts as reducing as well as capping agent. They can therefore, be used to synthesize metal nanoparticles and their size may be controlled by monitoring the concentration of extract and metal ions. Since they are antibacterial they may be used for the treatment of bacterial infections in man and animal. They can also be used in purification of water, in soaps and medicine. Their sustained release may be achieved by coating them with a suitable polymer. Silver nanoparticles fabricated from edible U. longissima are free from toxic chemicals and therefore they can be safely used in medicine and medical devices. These silver nanoparticles were stable for weeks therefore they can be stored for longer duration of time without decomposition.

Antimicrobial activity and protective effect of Geranium thunbergii against oxidative DNA damage via antioxidant effect (현초의 항산화 활성에 의한 산화적 DNA 손상 보호효과 및 항균활성)

  • Kwon, Tae-Hyung;Lee, Su-Jin;Park, Jae-Ho;Kim, Taewan;Park, Jung-Ja;Park, Nyun-Ho
    • Food Science and Preservation
    • /
    • v.24 no.3
    • /
    • pp.325-333
    • /
    • 2017
  • This study aimed to investigate the various biological activities of Geranium thunbergii such as antimicrobial activity and protective effect against oxidative damage. To evaluate its antioxidant and antimicrobial activities, we first performed methanol extraction; this methanol extract was further partitioned using various solvents. And then, its antioxidant activity was measured using various assays including total phenolic content and protection against oxidative DNA damage, and antimicrobial activities were examined using minimum inhibiting concentration (MIC) test, and paper disc method. In addition, high-performance liquid chromatography was performed to analyze the major chemical components of ethyl acetate fraction. The G. thunbergii fraction with ethyl acetate exhibited higher antioxidant and antimicrobial activities than the other fractions. The results showed that G. thunbergii ethyl acetate fraction at $50{\mu}g/mL$ had strong DPPH and ABTS radical scavenging activities of 80.88% and 80.12%, respectively. In addition, the ethyl acetate fraction protected DNA from the oxidative damage induced by ferrous ion and hydroxyl radicals and showed high antimicrobial activity with diameter of inhibition zones ranging from 13.33 to 15.67 mm. High-performance liquid chromatography analysis revealed the major phenolic compounds of G. thunbergii to be ellagic acid and gallic acid. These results suggest that G. thunbergii might protect DNA against oxidative stress induced by reactive oxygen species and can be utilized as a natural source of antioxidant and antimicrobial agent in the food industry.

Numerical Study on Towing Stability of LNG Bunkering Barge in Calm Water (LNG 벙커링 바지의 정수 중 예인안정성에 관한 수치연구)

  • Oh, Seung-Hoon;Jung, Dong-Ho;Jung, Jae-Hwan;Hwang, Sung-Chul;Cho, Seok-Kyu;Sung, Hong-Gun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.3
    • /
    • pp.143-152
    • /
    • 2019
  • In this paper, the towing stability of the LNG bunker barge was estimated. Currently, LNG bunkering barge is being developed for the bunkering of LNG (Liquefied Natural Gas), an eco-friendly energy source. Since the LNG bunkering barge assumes the form of a towed ship connected to the tow line, the towing stability of the LNG bunker barge is crucial f not only for the safety of the LNG bunker barge but also the neighboring sailing vessels. In the initial stages, a numerical code for towing simulation was developed to estimate the towing stability of the LNG bunkering barge. The MMG (Maneuvering Mathematical modeling Group) model was applied to the equations of motion while the empirical formula was applied to the maneuvering coefficients for use in the initial design stage. To validate the developed numerical code, it was compared with published calculation and model test results. Towing simulations were done based on the changing skeg area and the towing position of the LNG bunkering barge using the developed numerical codes. As a result, the suitability of the designed stern skeg area was confirmed.

Numerical Study on Towing Stability of LNG Bunkering Barge in Calm Water (LNG 벙커링 바지의 정수 중 예인안정성에 관한 수치연구)

  • Oh, Seunghoon;Jung, Dongho;Jung, Jae-Hwan;Hwang, Sung-Chul;Cho, Seok-kyu;Sung, Hong Gun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.185-188
    • /
    • 2019
  • In this paper, the towing stability of the LNG bunker barge is estimated. Currently, LNG bunkering barge is being developed as an infrastructure for the bunkering of LNG (Liquefied Natural Gas), an eco-friendly energy source. Since the LNG bunker barge are in the form of towed ship connected to the tow line, the towing stability of the LNG bunker barge is very important for the safety of not only the LNG bunker barge but also the surrounding sailing vessels. The numerical code for towing simulation was developed to estimate the towing stability of the LNG bunker barge at the initial design stage. The MMG(Manoeuvring Mathematical Group) model was applied to the equations of motion and the empirical formula was applied to the maneuvering coefficients so that they could be used in the initial design stage. To validity of the developed numerical code, it was compared with published calculation and model test results. Towing simulations were carried out according to with and without stern skeg of the LNG bunker barge using the developed numerical code. Through the results of the simulations, the appropriateness of the stern skeg area designed was confirmed.

  • PDF

Comparison of Bacterial Removal Effectiveness by Different Hand Washing Methods (손세정 방법에 따른 세균 제거 효과 비교에 대한 융복합 연구)

  • Chong, Moo-Sang;Lee, Jang-Jin;Kim, Jiro
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.69-74
    • /
    • 2019
  • The purpose of this study is to compare the efficiency of bacteria removal of three different types of hand washing methods. This study performed a convenient sampling of 30 volunteers in cross-over design. The study divided the 30 volunteers into three random groups. The three groups were asked to use antiseptic soap, alcohol-based hand disinfectant, and disposable wet wipes respectively. The result of the study showed that mean log reduction values after each had washing method were $-0.45({\pm}0.69)$ with antiseptic soap and water, $-1.19({\pm}0.52)$ with alcohol-based hand disinfectant and $-0.75({\pm}0.58)$ with disposable wet wipes. The difference was statistically significant when using alcohol-based hand disinfectant compared to the other two methods (p=0.000). According to this study, alcohol-based hand disinfectant was the most effective product based on bacteria removal for hand washing. Advantages of using alcohol-based hand disinfectant are that it is cost-effective and easy to buy, also eco-friendly. Therefore, to prevent infectious disease, providing alcohol-based hand disinfectant to every corner of the community will be very helpful.

The Study on the Non-Point Pollutants Reduction Using Friendly Bank Protection Anaerobic/Aerobic Contact Filtration Zone (혐기/호기 접촉여과대를 이용한 자연형 하천호안공법의 비점오염 저감 특성 연구)

  • Chang, HyungJoon;Kim, SungDuk
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2019
  • It is an urgent issue to manage and reduce non-point pollution sources for improving the water quality of stream and lakes in rural areas. In this study, in order to reduce non-point pollution sources in rural area, Gabion mattresses was proposed to provide protection of riverbanks with anaerobic and aerobic area. The utilization of this was assessed by lab scale model test and pilot plant test. After filling the inside of the gabion mattresses with aggregate, the filtration zone under anaerobic and aerobic conditions was formed to treat the contaminants. In addition, vegetation was deposited on the surfae of the gabion to prevent the inflow of soil and to promote purification by the plant. COD and nitrogen content (T-N, $NH_4{^+}$, -N, $NO_3{^-}N$) were monitored in model and field tests. The lab scale model test showed removal efficiency of 17% of TCOD, 35% of SCOD, 14% of TN, 62% of $NH_4{^+}$, -N, and 33% of $NO_3{^-}$ N. Also, pilot plant test showed removal efficiency of 24% of TCOD, 29% of SCOD, 47% of TN, 50% of $NH_4{^+}-N$, 33% of $NO_3{^-}$, N and 29% of TP.

Brief Review on the preparation of N-doped TiO2 and Its Application to Photocatalysis (질소 도핑 티타니아의 제조와 광촉매 활용의 연구동향)

  • Oh, Kyeongseok;Hwang, Duck Kun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.331-337
    • /
    • 2019
  • Titania has become the most applicable material for photocatalytic application. Nevertheless, titania has the weak point in its wide band gap energy that is mainly activated by UV irradiation. There have been vast research challenges in order to make the wide band gap energy of titania narrow that could be activated in the presence of visible light. Various modifications of titania surface were popular because titania needs to change its surface to respond in visible light. Among the methodological approaches, N-doping to titania can be the alternative candidate because it is facile process and eco-friendly. The activated electron from valence band in N-doped $TiO_2$ migrates to conduction band in the presence of visible light irradiation, which shows photocatalytic activity as well. In this study, focused on the evaluation of nitrogen state after N-doping through brief review. Arguments are still existed in nitrogen states and their different effects on photocatalytic activity. In particular, two nitrogen states are generally reported; substitutional and interstitial states. The research articles regarding N-doped $TiO_2$ are continuously appearing because the potential application of water split in visible light is still fascinate. The future of N-doped $TiO_2$ is also presented by referrals based on various literature.