• Title/Summary/Keyword: water-energy

Search Result 9,190, Processing Time 0.04 seconds

Hydropower Development utilizing waterpipe (수도관로를 활용한 소수력 개발)

  • Lee Hyoung-Mook;Kim Heung Nyun;Kim ki won;Lee Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1507-1509
    • /
    • 2004
  • Many domestic organizations are pushing ahead with small hydropower business to develop a renewable energy. In addition each organization gradually spreads small hydropower business with searching the best site for it. And Kowaco (Korea Waters Resources Corporation) answers a purpose of the government policy to spread the wide use of a renewable energy. This study explains the researching programs for the best development sites for small hydropower generation with using water pipes managed and controled by Kowaco.

  • PDF

Experimental Study on the Indoor Thermal Characteristics for Floor Radiant Heating System (바닥복사 난방시스템의 실내 열환경 특성에 대한 실험적 연구)

  • Song, Jae-Yeob;Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.3
    • /
    • pp.1-12
    • /
    • 2021
  • In this study, the effects of various operational conditions for floor radiant heating system were researched by experiments. Hot water supply set temperature, indoor air set temperature and supply water flowrate were considered as operational conditions. The control method for this system is On-Off control of automatic thermostatic valve. The purpose of this study is to evaluate indoor thermal control characteristics and energy performance, respectively. As a result, if lower supply water temperature is applied, the supply and return temperature difference is reduced and energy consumption of heat supply is also reduced.

Study of Power Output Characteristics of Wave Energy Conversion System According to Turbine Installation Method Combined with Breakwater (방파제 부착형 파력발전시스템의 터빈설치 방법에 따른 출력특성에 관한 연구)

  • Lee, HunSeok;Oh, Jin-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.317-321
    • /
    • 2015
  • Many kinds of generation systems have been developed to use ocean energy. Among these, with the use of an oscillating water column (OWC) for power generation is attracting attention. The OWC-type wave power generation system converts wave energy into electricity by operating a generator turbine with the oscillating water level in a column of water. There are two ways to convert wave power into electricity using an OWC. One uses a cross-flow turbine using the water level inside the OWC. The other method uses the flow of air in a Wells turbine, which depends on the water level. An experiment was carried out using a 2-D wave tank in order to minimize the number of empirical tests. The design factors were taken from Koo et al. (2012) and the experimental environment assumed by free surface motion. This paper deals with characteristics of two types of wave energy conversion systems combine with a breakwater. One model uses an air-driven Wells turbine and a cross-flow water turbine. The other type uses a cross-flow water turbine. Wave energy converters with OWCs have mostly been studied using air-driven Wells turbines. The efficiency of the cross-flow turbine was about 15% higher than that of the other model, and the water level of the OWC internal chamber for the cross-flow water turbine and air-driven Wells turbine was less than about 40% lower than the one using only the cross-flow water turbine.

Development of Waterworks Piping MHD Technology for USN Advancement in U-City/BIM (U-City/BIM USN 고도화를 위한 상수도배관용 자기유체발전 기술 개발)

  • Hwang, Jung-Rae;Lee, Hyun-Dong;Oh, Yoon-Seuk;Kwak, Pill-Jae;Kim, Gi-Eun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.4
    • /
    • pp.555-563
    • /
    • 2012
  • Due to the importance of energy-saving and CO2 reduction is being emphasized in the world, efforts to find a solution for the problems is increasing rapidly. In particular, the renewable energy is on understanding as a breakthrough for the protection of the environment and the economic development, so it is intensively fostered as future industries. Developed countries are already pursuing policy and technology development related with renewable energy. In this paper, we will develop MHD(Magneto Hydro Dynamics) technology to supply the commercial power that can is targeted at water pipe related with hydro power among renewable energy technologies. Kinetic energy of fluid flowing in the water pipe is converted into electric power. It allows stable power supply to the various sensors and devices on water pipe. We have performed several experiments to verify the application possibility of the developed technologies and present the result and a method of performance improvement of the technologies.

Frictional Characteristics at High Temperature of Water-lubricated Stainless Steel Ball Bearing (수윤활 스테인레스강 볼베어링의 고온 마찰 특성)

  • Lee Jae-Seon;Kim Jong-In;Kim Ji-Ho;Park Hong-Yune;Zee Sung-Qunn
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.324-328
    • /
    • 2003
  • Water-lubricated frictional characteristics of stainless steel ball bearing is not well known compared to oil-lubricated frictional characteristics. Furthermore study on friction at high temperature is rare because bearing maintenance strategy for water-lubricated or chemicals-lubricated bearings of equipment is mostly based on change of failed bearings and parts. Ball bearings and ball screw are installed on the power transmission for a developing integral reactor and these are lubricated with high temperature and high pressure chemically-controlled pure water. Bearings and power transmitting mechanical elements for an atomic reactor needs high reliability. and high performance during estimated lifetime, and it should be verified. In this paper, experimental research results of frictional characteristics of water-lubricated ball bearing as a preliminary investigation.

  • PDF

Hydrogen Production by Water Splitting with Solar Energy (태양에너지를 이용한 수소제조)

  • Lee Tai-Kyu
    • Journal of Energy Engineering
    • /
    • v.15 no.2 s.46
    • /
    • pp.96-106
    • /
    • 2006
  • Among several different hydrogen production technologies, solar hydrogen system for water splitting is the only clean and sustainable energy supplier. Hydrogen production by water-splitting utilizing solar energy has attracted considerable interest since the pioneering work of Honda and Fujishima in 1979, who discovered that water can be photo-electrochemically decomposed into hydrogen and oxygen using a semiconductor ($TiO_2$) electrode under UV irradiation. Most efforts to utilize solar ray lead to explore visible responding photocatalysts, PEC cells and other fusion technology like bio-photocatalytic conversion. In this paper, photon utilization technologies for water splitting have been briefly reviewed except solar thermal utilization technology.

Delayed Hydride Cracking Velocity of CANDU Zr-2.5Nb Tubes in High Temperature Water

  • Kim Young Suk;Cho Sun Young;Im Kyung Soo;Cheong Yong Moo;Kim Sung Soo
    • Nuclear Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.206-213
    • /
    • 2003
  • This study focuses on an understanding of the environmental effect on delayed hydride cracking velocity (DHCV) of CANDU Zr-2.5Nb tubes. To simulate DHC susceptibility of the Zr-2.5Nb tubes in reactor operating conditions, DHC tests were successfully carried out in pressurized water at 180 and $250^{\circ}C$ using a self-designed autoclave for the first time. Using 17 mm compact tension specimens electorlytically charged to 34 and 60 ppm H, 3 to 7 DHCV data were determined in water at both temperatures and compared to those determined in air that were already confirmed to be valid through a round robin test on DHCV of Zr-2.5Nb tubes sponsored by a IAEA coordinated research program. The pressurized water environment has little effect on DHCV of Zr-2.5Nb tube in water at both temperatures even though DHCV is slightly lower in water than that in air. The lower DHCV of the Zr-2.5Nb tube during short-term tests is discussed in viewpoint of the cooling rate from the peak temperature to the test temperature.

Distribution of Hot Tap Water Load for District Heating Substation with Hot Tap Water 2-Stage Heat Exchanger (급탕 2단열교환방식 지역난방 열사용시설의 급탕부하 분배에 관한 연구)

  • Jeong, Dong-Hwa;Kim, Joo-Wan;Baik, Young-Jin;Lee, Young-Soo;Chung, Dae-Hun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.4
    • /
    • pp.297-302
    • /
    • 2011
  • According to the standards for district heating substation established by Korea District Heating Corporation, water heating supply systems at over 150 Mcal/h capacity must employ the 2-stage heat exchanger that improves the system efficiency by reusing the heat included in the return water of district heating system already used for space heating. In this paper, the operating characteristics of the system in accordance with the load distribution of two heat exchangers for pre-heating and re-heating cold city water are investigated. The results including mass flow rate, return temperature etc. help to manage district heating system economically.

Automation Development in Water and Wastewater Systems

  • Olsson, Gustaf
    • Environmental Engineering Research
    • /
    • v.12 no.5
    • /
    • pp.197-200
    • /
    • 2007
  • Advanced control is getting increasingly demanded in water and wastewater treatment systems. Various case studies have shown significant savings in operating costs, including energy costs, and remarkably short payback times. It has been demonstrated that instrumentation, control and automation (ICA) may increase the capacity of biological nutrient removing wastewater treatment plants by 10-30% today. With further understanding and exploitation of the mechanisms involved in biological nutrient removal the improvements due to ICA may reach another 20-50% of the total system investments within the next 10-20 years. Disturbances are the reason for control of any system. In a wastewater treatment system they are mostly related to the load variations, but many disturbances are created also within the plant. In water supply systems some of the major disturbances are related the customer demand as well as to leakages or bursts in the pipelines or the distribution networks. Hardly any system operates in steady state but is more or less in a transient state all the time. Water and energy are closely related. The role of energy in water and wastewater operations is discussed. With increasing energy costs and the threatening climate changes this issue will grow in importance.

Experiment on the Charge and Discharge of Thermal Energy for Under-Water Harvest-Type Ice Storage System (수중 하베스트형 빙축열시스템의 축방냉 특성 실험)

  • Kim, J.D.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.2
    • /
    • pp.11-17
    • /
    • 2002
  • This paper is concerned with the development of a new method for making, separating ice and storage floated ice by installing an evaporation plate at under-water within a storage tank. In a conventional harvest-type ice storage system, a tank saves ice by separating an ice from an installed evaporation plate, which is located above an ice storage tank as an ice storage system. Developed new harvest-type method shows good heat transfer efficiency than a convectional method. It is because the evaporation panel is directly contacted with water in a storage tank. Also, at a conventional system a circulating pump, a circulating water distributor and a piping are installed, however these components are not necessary in a new method. In this study ice storage systems are experimentally investigated to study the charge and discharge of thermal energy. The results show the applicable possibility and performance enhancement of a new type.