• Title/Summary/Keyword: water-bottom properties

Search Result 207, Processing Time 0.028 seconds

Radiolarian Biostratigraphy and Paleoceanographic Study from the Northeast Equatorial Pacific (북동태평양지역의 방산충 생층서 및 고해양환경 연구)

  • Kim, Ki-Hyune;Park, Jeoung-Hee
    • Ocean and Polar Research
    • /
    • v.21 no.2
    • /
    • pp.127-136
    • /
    • 1999
  • Radiolarian assemblages from KODOS area were analyzed in order to understand the biostratigraphy and paleoceanography of deep-sea sediment from the Northeast Equatorial Pacific. The sediment core was divided into two or three units on the basis of the chemical and physical properties. In the upper sediment, mixtures of Quaternary and Tertiary radiolarians are found indicating active reworking processes. Dissolution of radiolarians seem to increase with depth. Radiolarians are seldom in Unit III presumably due to dissolution and corrosion. The middle part of unit I appears to correspond to Collosphaera invaginata Zone (0.21 Ma). Unit II belongs to Collosphaera tuberosa Zone. Based on the absence of Stylatractus universus, we estimate its age to be younger than 0.42 Ma. Based on our analyses of radiolarians in Unit I and II, we estimated the age of unit III as Tertiary, particularly from Oligocene to Miocene. There may to be hiatuses of more than 3 My from late Miocene to Pliocene, which probably resulted from erosion and dissolution by the Antarctic Bottom Water Sedimentation rates during Quaternary range from 0.15 to 0.50 mm/ky with significant variabilities among stations. Radiolarians in the study area were mostly warm-water species.

  • PDF

A Study on the Initial Behavior of Dredged Material Disposal in the Coastal Water (연안수역에서 투기준설토의 초기거동에 관한 연구)

    • Journal of Korean Port Research
    • /
    • v.9 no.1
    • /
    • pp.45-56
    • /
    • 1995
  • Investigation of the physical behavior of dredged material disposal in coastal water includes estimations of water column concentration in the receiving water, exposure time, the initial deposition pattern as well as thickness of material at the dumping fields near the estuary area. Calculation based on vertical setting and horizontal advection of single particles ignore the effects of bulk properties of the disposed material, vertical and horizontal diffusion, and material dilution due to the entrainment of ambient water during descent. This paper focuses on the spatial and temporal changes in the dumping fields for the water column and bottom at a hypothetically confined coastal water, where the ambient time-invariant velocity and density profiles are applied, within the initial time period following the instantaneous release of the dredged material. This model accounts the behavior of material after release divided into three phases: convective descent, dynamic collapse and long-term passive dispersion

  • PDF

Manufacturing artificial lightweight aggregates using coal bottom ash and clay (석탄 바닥재와 점토를 이용한 인공경량골재 제조)

  • Kim, Kang-Duk;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.277-282
    • /
    • 2007
  • The artificial lightweight aggregate (ALA) was manufactured using coal bottom ashes produced from a thermoelectric power plant with clay and, the sintering temperature and batch composition dependence upon physical properties of ALA were studied. The bottom ash (BA) had 13wt% coarse particle (>4.75mm) and showed very irregular shape so should be crushed to fine particles to be formed with clay by extrusion process. Also the bottom ash contained a many unburned carbon which generates the gas by oxidation and lighten a aggregate during a sintering process. Plastic index of green bodies decreased with increasing bottom ash content but the extrusion forming process was possible for the green body containing BA up to 40wt% whose plastic index and plastic limit were around 10 and 22 respectively. The ALA containing $30{\sim}40wt%$ BA sintered at $1100{\sim}1200^{\circ}C$ showed a volume specific density of $1.3{\sim}1.5$ and water absorption of $13{\sim}15%$ and could be appled for high-rise building and super-long bridge.

Newton's Method to Determine Fourier Coefficients and Wave Properties for Deep Water Waves

  • JangRyong Shin
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.49-57
    • /
    • 2023
  • Since Chappelear developed a Fourier approximation method, considerable research efforts have been made. On the other hand, Fourier approximations are unsuitable for deep water waves. The purpose of this study is to provide a Fourier approximation suitable even for deep water waves and a numerical method to determine the Fourier coefficients and the wave properties. In addition, the convergence of the solution was tested in terms of its order. This paper presents a velocity potential satisfying the Laplace equation and the bottom boundary condition (BBC) with a truncated Fourier series. Two wave profiles were derived by applying the potential to the kinematic free surface boundary condition (KFSBC) and the dynamic free surface boundary condition (DFSBC). A set of nonlinear equations was represented to determine the Fourier coefficients, which were derived so that the two profiles are identical at specified phases. The set of equations was solved using Newton's method. This study proved that there is a limit to the series order, i.e., the maximum series order is N=12, and that there is a height limitation of this method which is slightly lower than the Michell theory. The reason why the other Fourier approximations are not suitable for deep water waves is discussed.

Correlation Analysis between Unit Weight and Thermal Conductivity in Porous Concrete Containing Natural Fine and Bottom Ash Aggregates (바텀애시와 천연 잔골재를 혼입한 다공성 콘크리트의 단위질량과 열전도도의 상관분석)

  • Seung-Tae Jeong;In-Hwan Yang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.542-551
    • /
    • 2023
  • In this paper, the thermal properties of porous concrete containing natural fine aggregates in bottom ash aggregates were analyzed. In this study, natural fine aggregates were used for bottom ash aggregates to understand the material properties of each aggregate and then used as an aggregate for porous concrete. A porous concrete specimen was manufactured by fixing the water-binder ratio at 0.25 and designating the compaction at 0.5, 1.5, and 2.5 MPa. Unit weight, total void ratio and thermal conductivity test were measured and discussed. As the compaction increased and the mixing ratio of natural fine aggregates increased, the unit weight and thermal conductivity increased, and the total void ratio decreased. In addition, the correlations between unit weight, total void ratio and thermal conductivity of porous concrete with previous experimental data were presented and the correlation coefficient (R2) was also analyzed.

Influence of inorganic composition and filler particle morphology on the mechanical properties of self-adhesive resin cements

  • Marina Rodrigues Santi ;Rodrigo Barros Esteves Lins;Beatriz Ometto Sahadi;Giovanna Correa Denucci;Gabriela Soffner ;Luis Roberto Marcondes Martins
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.3
    • /
    • pp.32.1-32.11
    • /
    • 2022
  • Objectives: This study aimed to evaluate the influence of inorganic composition and filler particle morphology on the mechanical properties of different self-adhesive resin cements (SARCs). Materials and Methods: Three SARCs including RelyX Unicem-2 (RUN), Maxcem Elite (MAX), and Calibra Universal (CAL) were tested. Rectangular bar-shaped specimens were prepared for flexural strength (FS) and flexural modulus (FM) and determined by a 3-point bending test. The Knoop microhardness (KHN) and top/bottom microhardness ratio (%KHN) were conducted on the top and bottom faces of disc-shaped samples. Sorption (Wsp) and solubility (Wsl) were evaluated after 24 hours of water immersion. Filler morphology was analyzed by scanning electron microscopy and X-ray energy dispersive spectroscopy (EDS). FS, FM, %KHN, Wsp, Wsl, and EDS results were submitted to 1-way analysis of variance and Tukey's post-hoc test, and KHN also to paired t-test (α = 0.05). Results: SARC-CAL presented the highest FS value, and SARC-RUN presented the highest FM. SARC-MAX and RUN showed the lowest Wsp and Wsl values. KHN values decreased from top to bottom and the SARCs did not differ statistically. Also, all resin cements presented carbon, aluminum, and silica in their composition. SARC-MAX and RUN showed irregular and splintered particles while CAL presented small and regular size particles. Conclusions: A higher mechanical strength can be achieved by a reduced spread in grit size and the filler morphology can influence the KHN, as well as photoinitiators in the composition. Wsp and Wsl can be correlated with ions diffusion of inorganic particles.

Variation of Corrosion Properties on the Steel Surface by Environmental Changes in Shihwa Lake (시화호 환경 변화에 따른 강재 표면의 부식특성 변화)

  • Park, Jun-Mu;Lee, Seung-Hyo;Woo, Sang-Kyun;Chu, In-Yeop;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.316-324
    • /
    • 2018
  • Harsh seawater environment is subdivided into marine atmosphere, splash zone, tidal zone, submerged zone and bottom of sea depending on the exposed part. Since corrosion rate depends on the conditions of the exposed parts, proper protection and maintenance for each parts are essential for long-term use of steel structures in seawater environment. For steel structures which were installed in Shiwha Lake, a special maintenance system is required to guarantee its long-term durability and safety. As the tidal power plant has recently been operated, the salinity has risen due to the rapid influx of seawater upstream into Sihwa Lake and the corrosion tendency of the structure is variable according to the water level fluctuation. In this study, corrosion properties of steel structures under water level fluctuation was evaluated by corrosion rate measurement, visual inspection and natural potential measurement and their durability and life management were discussed in view of the effect of variation in of seawater level fluctuations in Shihwa Lake.

Computer Tomography as a Tool for Physical Analysis in an Anthropogenic Soil

  • Chun, Hyen Chung;Park, Chan Won;Sonn, Yeon Kyu;Cho, Hyun Joon;Hyun, Byung Keun;Song, Kwan Cheol;Zhang, Yong Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.549-555
    • /
    • 2013
  • Human influence on soil formation has dramatically increased as the development of human civilization and industry. Increase of anthropogenic soils induced research of those soils; classification, chemical and physical characteristics and plant growth of anthropogenic soils. However there have been no reports on soil pore properties from the anthropogenic soils so far. Therefore the objectives of this study were to test computer tomography (CT) to characterize physical properties of an anthropogenic paddy field soil and to find differences between natural and anthropogenic paddy field soils. Soil samples of a natural paddy field were taken from Ansung, Gyeonggi-do (Ansung site), and samples of an anthropogenic paddy field were from Gumi in Gyeongsangnam-do (Gasan) where paddy fields were remodeled in 2011-2012. Samples were taken at three different depths and analyzed for routine physical properties and CT scans. CT scan provided 3 dimensional images to calculate pore size, length and tortuosity of soil pores. Fractal analysis was applied to quantify pore structure within soil images. The results of measured physical properties (bulk density, porosity) did not show differences across depths and sites, but hardness and water content had differences. These differences repeated within the results of pore morphology. Top soil samples from both sites had greater pore numbers and sizes than others. Fractal analyses showed that top soils had more heterogeneous pore structures than others. The bottom layer of the Gasan site showed more degradation of pore properties than ploughpan and bottom layers from the Ansung site. These results concluded that anthropogenic soils may have more degraded pore properties as depth increases. The remodeled paddy fields may need more fundamental remediation to improve physical conditions. This study suggests that pore analyses using CT can provide important information of physical conditions from anthropogenic soils.

Growth and yield responses of rice varieties to various soil water deficit conditions under different soil types

  • Kikuta, Mayumi;Samejima, Hiroaki;Magoti, Rahab;Kimani, John M.;Yamauchi, Akira;Makihara, Daigo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.322-322
    • /
    • 2017
  • To avoid drought stress under rainfed upland conditions, it is important for rice to efficiently utilize water at shallow soil layers supplied by rainfall, and access to water retained in deer soil layers. The root developmental characteristics of rice, which play important role in the adaptability to drought conditions, vary depending on the variety. Moreover, water availability for plant differs depending on the soil types that have different physical properties such as water holding capacity, permeability, capillary force, penetration resistance, etc. In this study, we evaluated growth and yield responses of rice varieties to various soil water deficit conditions under three different soil types. The experiment was conducted in a plastic greenhouse at the Kenya Agricultural and Livestock Research Organization-Mwea from October 2016 to January 2017. Two upland varieties (NERICA 1 and 4) and one lowland variety (Komboka) were grown in handmade PVC pots (15.2 cm diameter and 85.0 cm height) filled with three different types of soil collected from major rice-growing areas of the country, namely black cotton (BC), red clay (RC), and sandy clay (SC). Three watering methods, 1) supplying water only from the soil surface (W1), 2) supplying water only from the bottom of the pots (W2), and 3) supplying water both from the soil surface and the bottom of pots (W3), were imposed from 40 days after sowing to maturity. Soil water content (SWC) at 20, 40, and 60 cm depths was measured regularly. At the harvesting stage, aboveground and root samples were collected to determine total dry weight (TDW), grain yield, and root length at 0-20, 20-40, 40-60, and 60-80 cm soil layers. Irrespective of the watering methods, the greatest root development was obtained in RC, while that in BC was less than other two soils. In BC, the degree of yield reduction under W1 was less than that in RC and SC, which could be attributed to the higher water holding capacity of BC. In RC, the growth and yield reduction observed in all varieties under W1 was attributed to the severe drought stress. On the other hand, under W2, SWC at the shallow soil depth in RC was maintained because of its higher capillary force compared with BC and SC. As the result, growths and yields in RC were not suppressed under W2. In SC, deep root development was not promoted by W2 irrespective of the varieties, which resulted in significant yield losses. Under W1, the rice growth and yield in SC was decreased although shallow root development was enhanced, and the stomatal conductance was maintained higher than RC. It was suspected that W1 caused nutrients leaching in SC because of its higher permeability. Under rainfed conditions, growth and yield of rice can be strongly affected by soil types because dynamics of soil water conditions change according to soil physical properties.

  • PDF

A Study on Performance of Water Curtain Nozzles for Protection of Wooden Cultural Properties from Forest Fire (산불로부터 목조문화재 보호를 위한 수막노즐의 성능에 관한 연구)

  • Kim, Kyoung-Jin;Song, Dong-Woo;Lee, Su-Kyung
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.8-13
    • /
    • 2012
  • This study suggests the water curtain nozzles as the way to protect important wooden cultural properties from an adjacent building fire or a forest fire. They are designed to block off the pyrolysis of timbers which occurs at $200{\sim}250^{\circ}C$ by forming a water curtain with the flow of water that spouts over a certain pressure from the bottom. The existing water curtain nozzles installed at the following sites were examined: NakSan-sa (Temple) in Gangwon-do (Province) and in Muwisa (Temple) in Jeollanam-do (South Province). As a way to improve and complement the system, this study designed nozzles with covers in order not to disrupt the landscape. Connected pipes are elevated and jet water when they are in use. Possible ways to install the connected elevating pipes to jet water effectively were investigated.