• Title/Summary/Keyword: water-bottom properties

Search Result 207, Processing Time 0.031 seconds

sound Velocity and Attenuation Coefficient in the Core Sediment of Deep-Sea Basin, East Sea of Korea (Sea of Japan) (동해 심해분지 시추퇴적물의 음속과 감쇠계수)

  • 김성렬;이용국
    • 한국해양학회지
    • /
    • v.26 no.1
    • /
    • pp.59-66
    • /
    • 1991
  • Laboratory studies were carried out to measure the sound velocity (V/SUB p/) and quality factor (Q/SUB p/, inverse attenuation) in the horizontal (H) and vertical (V) direction on the core sampled sediment of deep-sea basin (1,850 meter water depth), East Sea of Korea (Sea of Japan). Sampled core was about 250 cm long and 500 kHz ultrasonic p-wave transducer was used for a sound soured. V/SUB p/ varies from 1,480 m/sec to 1,500 m/sec, it is not clear which direction is faster, V/SUB PH/ or V/SUB pv/, within${\pm}$ 1.0% anisotropy (A/SUB p/). It is thought because the core sediment facies is highly (or slightly) bioturbated homogeneous mud with very high porosity (more than 80%). The general trend of Q/SUB p/ is decreasing 10 to 5 with the buried depth, it is strongly affected by the variation of sediment texture (increasing silt, decreasing clay) with increasing of CaCO$_3$ and organic matter content, But Q/SUB PH/ is jumping up to 14.9 near the bottom of core sediment as including volcanic ash richly. The relationship between V/SUB PH/ and Q/SUB PH/ shows the mirror image nearly, it is interpreted that not only the geotechnical properties and texture but also sea-water characteristics (high Q/SUB p/, low V/SUB p/) according to rich water content affect strongly in the upper part of the unconsolidated deep-sea basin sediment.

  • PDF

Internal Flow and Evaporation Characteristic inside a Water Droplet on a Vertical Vibrating Hydrophobic Surface (수직 진동하는 소수성 표면 위 액적의 내부유동 및 증발특성 연구)

  • Kim, Hun;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.579-589
    • /
    • 2015
  • This study aims to understand the internal flow and the evaporation characteristics of a deionized water droplet subjected to vertical forced vibrations. To predict and evaluate its resonance frequency, the theories of Lamb, Strani, and Sabetta have been applied. To visualize the precise mode, shape, and internal flow inside a droplet, the experiment utilizes a combination of a high-speed camera, macro lens, and continuous laser. As a result, a water droplet on a hydrophobic surface has its typical shape at each mode, and complicated vortices are observed inside the droplet. In particular, large symmetrical flow streams are generated along the vertical axis at each mode, with a large circulating movement from the bottom to the top and then to the triple contact line along the droplet surface. In addition, a bifurcation-shaped flow pattern is formed at modes 2 and 4, whereas a large ellipsoid-shape flow pattern forms at modes 6 and 8. Mode 4 has the fastest internal flow speed and evaporation rate, followed by modes 8 then 6, with 2 having the slowest of these properties. Each mode has the fastest evaporation rate amongst its neighboring frequencies. Finally, the droplet evaporation under vertical vibration would lead to more rapid evaporation, particularly for mode 4.

Effect of Bottom Sediments on Oxygen Demand of Overlying Water in Onshore of Lake (팔당호 수변부 퇴적물이 수층의 산소소모에 미치는 영향)

  • Kang, Yang-Mi;Song, Hong-Gyu
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.1 s.89
    • /
    • pp.23-30
    • /
    • 2000
  • n situ sediment oxygen demand (SOD), which takes place with the uptake of dissolved oxygen for biological metabolism and chemical oxidation in sediments, ranged from 1.57 to $12.55\;mg\;O_2\;m^{-2}\;h^{-1}$ in onshore of Lake Paldang from April to November 1999. SOD was influenced by the amount of organics and oxygen diffusion. Comparing the oxygen demands partitioning between overlying water and sediment during initial phase, SOD accounted for $63.8{\sim}94%$ of total oxygen demand in Lake Paldang. The chemical SOD and nitrogenous oxygen demand ranged $1.2{\sim}18.3%$ and $8.3{\sim}51.7%$ of total SOD, respectively. This result indicated that SOD in Lake Paldang occurred mainly by aerobic respiration and nitrification. Although the flow velocity could increase SOD within a certain limit, the effect of sediment depth on SOD was dependent on physicochemical properties of the sediment. This study showed that SOD can represent a significant portion of the total oxygen up-take in Lake Paldang. Therefore, the assessment of SOD might be necessary for the control of water quality.

  • PDF

The study on corrosion of the inner area of closed box-girder for unpainted weathering steel bridges (무도장 내후성 강 교량의 밀폐형 박스거더 내부의 부식에 대한 고찰)

  • Ma, Seung-Hwan;Noh, Young-Tai;Jang, Gun-Ik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2391-2400
    • /
    • 2015
  • Weather proof steels are used for steel bridges due to its high corrosion resistance under atmospheric conditions. However, instead of forming stabilized rust layers, general rust occurs on weather proof steels under high humidity condition close to seawater or shady places. In Japan, therefore, they perform rust stabilization treatment instead of unpainted treatment due to severe atmospheric conditions. However, most of domestic weather proof steels were constructed unpainted in the form of closed box-girder, which makes the periodical repetition of dry and wet hard to occur. For the steel bridges constructed on the Han river, the evaporation of water, dew condensation due to temperature change, and stagnant water due to rain affect harmfully on the formation of passive film on weather proof steels. Thus, in this research, in order to analyze corrosion properties inside the closed box-girder for the unpainted weather proof steel bridge in the waterworks safety zone, multiple ways of analysis such as observation with eyes, cellophane-tape test, steel thickness measurement, surface corrosion potential measurement, electron microscope analysis, and X-ray diffraction analysis of the rust were performed. As a result, unstable rust layer was observed inside the closed box-girder, and severe corrosion was observed on the top and bottom of the flanges due to the effects of stagnant water caused by rain, dew condensation, and de-icing materials.

Correlation of Simrad EM950(95kHz) Multibeam Backscatter Strength with Surficial Sediment Properties in the Sand Ridge of the Eastern Yellow Sea (황해 동부 사퇴분포지역의 표층퇴적물 특성과 Simrad EM950(95 kHz)멀티빔 후방산란 음압간 상관관계)

  • Kong, Gee-Soo;Kim, Seong-Pil;Park, Yo-Seop;Min, Gun-Hong;Kim, Ji-Uk;Park, Soo-Chul
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.719-738
    • /
    • 2006
  • Simrad EM950 multibeam data and surficial sediment grab samples were acquired to correlate backscatter strength with surficial sediment properties in the eastern Yellow Sea which tidal sand ridges are dominantly developed. The study area is divided into the western sand ridge zone characterized by well sorted, fine sandy sediment, and the eastern non-sand ridge zone characterized by poorly sorted, medium sand with some gravels and shell fragments. In spite of minor difference in grain size between two zones, the variations of backscatter strength between two zones are distinct. Multibeam backscatter strength of study area shows good correlation with the grain size of surface sediment as well as the carbonate contents. High occurrence of carbonate shell fragments can increase grain size and bottom roughness. The dominance of higher backscatter strength in the eastern non-sand ridge zone may reflect the effects of coarse grain size and high shell fragments contents.

Strength Properties of GFRP Reinforced Glulam Beams Bonded with Polyvinyl Acetate-Based Emulsion Adhesive (초산비닐수지계 접착제를 사용한 유리섬유강화플라스틱 복합집성재의 강도 성능 평가)

  • Park, Jun-Chul;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.19-25
    • /
    • 2008
  • This study was carried out to investigate the bending strength properties of the unreinforced glulam beams and the GFRP laminated glulam beams according to the volume ratio of GFRP. The 7-layer glulam beams ($10cm(b){\times}14cm(h){\times}180cm(l)$) were manufactured, using Larch (Larix kaempferi Carr.) laminae ($2cm(h){\times}10cm(b){\times}360cm(l)$), which were dried to the moisture content of 8% and specific gravity of 0.54. GPRP of 0.1 and 0.3 cm was reinforced between the outmost layer of bottom and next layer. When the glulam beams were reinforced with GFRP at the volume ratio of 0.7% and 2.1%, respectively, the bending strength was increased by 12% and 28%, respectively, in the reinforced beams than in control glulam beams. Also, the GFRP reinforced layer of the glulam beams with GFRP laminations blocked the progression of rupture, and the unbroken part held about 90% of the bending strength. In the results of glue joints test, the block shear strength is higher than $7.1N/mm^2$, the standard of KS F3021, and in the result of delamination, the adhesive strength is good as the water soaking and boiling delamination was less than 5%.

High-frequency Reverberation Simulation of High-speed Moving Source in Range-independent Ocean Environment (거리독립 해양환경에서 고속이동 음원의 고주파 잔향음 신호모의)

  • Kim, Sunhyo;Lee, Wonbyoung;You, Seung-Ki;Choi, Jee Woong;Kim, Wooshik;Park, Joung Soo;Park, Kyoung Ju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.104-115
    • /
    • 2013
  • In a shallow water waveguide, reverberation signals and their Doppler effects form the primary limitation on sonar system performance. Therefore, in the reverberation-limited environment, it is necessary to estimate the reverberation level to be encountered under the conditions in which the sonar system is operated. In this paper, high-frequency reverberation model capable of simulating the reverberation signals received by a high-speed moving source in a range independent waveguide is suggested. In this model, eigenray information from the source to each boundary is calculated using the ray-based approach and the optimizing method for the launch angles. And the source receiving position changed by the moving source is found by a scattering path-finding algorithm, which considers the speed and direction of source and sound speed to find the path of source movement. The scattering effects from sea surface and bottom boundaries are considered by APL-UW scattering models. The model suggested in this paper is verified by a comparison to the measurements made in August 2010. Lastly, this model reflects well statistical properties of the reverberation signals.

Ground Stability Evaluation of Volcanic Rock Area in Jeju according to the Loading Conditions (하중조건을 고려한 제주 화산암지대의 지반 안정성 평가)

  • Han, Heuisoo;Baek, Yong
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.199-209
    • /
    • 2021
  • This paper is written to evaluate the ground stability according to the construction of Jeju 2nd airport. Sumgol is the unique characteristics of Jeju soil, which is used to evaluate the ground stability of the airport. The research contents are as follows. 1) The geotechnical characteristics for Jeju 2nd airport was analyzed, and the Sumgol and geotechnical properties were calculated based on the existing geotechnical survey data. 2) The divided sections of Jeju 2nd airport were modeled to evaluate the ground stability after determining the section (runway and airport facilities) which have the different soil and loading properties. 3) The stability and deformation ranges of the airport ground were identified through numerical analysis. The entire airport was divided into three sections to analyze the stability of Jeju 2nd airport, and calculated the stresses, settlements, and strains of each section by computer numerical analysis modeling. For modeling, the ground and load conditions were examined, also pavement conditions for each airport ground section were examined. From the analysis results of each section according to the ground conditions, the vertical settlements were analyzed as 0.11~0.18 m and the sum of effective stress and pore water pressure were 92.75~445 kPa. These results were made by taking into account the Sumgol of the bottom ground without reinforcement, also the soil strength parameters of the airport ground were reduced for computer modeling, Therefore, if proper reinforcements are applied to the ground of Jeju 2nd airport, sufficient airport ground stability can be secured.

Detection of inflow permeable zones using fluid conductivity logging in coastal aquifer (공내수 치환기법을 이용한 연안지역 대수층의 수리특성 평가)

  • Hwang Seho;Park Yunsung;Shim Jehyun;Park Kwon Gp;Choi Sun Young;Lee Sang Kyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.83-92
    • /
    • 2005
  • Fluid conductivity logging has been applied in the boreholes to identify the permeable fi:actures and estimate the origin of saline groundwater in coast area. Fluid replacement technique measures the fluid electrical conductivity with depth at different times in a well after the borehole is first washed out with different water by passing a tube to the borehole bottom. Then formation water flows into the borehole through aquifer such as permeable fractures or porous formation during ambient or pumping condition. Measured conductivity profiles with times therefore indicate the locations of permeable zone or fractures within the open hole or the fully slotted casing hole. As a result of fluid conductivity logging for three boreholes in the study area, it is interpreted that saline groundwater is caused by seawater intrusion through fractured rock, although the effect by land reclamation partially remains. We are planning the quantitative analysis to estimate the hydraulic characteristics using fluid replacement technique, and this approach might be usefully utilized for assessing the characteristics of seawater intrusion, the design of optimal pumping, and estimating the hydraulic properties in coastal aquifer.

  • PDF

A Study on the Wall and Reservoir at the Valley Part of Stone Fortress - Focused on the Fortress of $Geoyeol-seong$ and $Seongsan-seong$ - (석축 산성의 계곡부 체성과 못(池)에 관한 연구 - 거창 거열성과 함안 성산산성을 중심으로 -)

  • Kwon, Soon-Kang;Lee, Ho-Yeol;Park, Un-Jung
    • Journal of architectural history
    • /
    • v.20 no.3
    • /
    • pp.7-22
    • /
    • 2011
  • With the accumulations of outcomes from archaeological excavations of mountain fortress of three kingdoms period, there have been studies about time-periodic territory range of mountain fortress, difference in the way(method) of construction, defence system and so on from various points of view. This is an empirical study on the construction method of the valley part of stone fortress. First of all, it is required to secure large quantity of fresh water for those who lived at mountain fortress. Especially when builders of fortress construct a fortification at the valley part of stone fortress, in advance they must sufficiently consider several options including the establishment of sustainable water resources. First, when it comes to build a fortification on a ridge[or a slope] of a mountain, you have only to consider a vertical stress. However, when it comes to build a fortification at the valley part of a mountain, You must have more sufficient preparations for the constructing process. Because there are not only a vertical stress but also a horizontal pressure simultaneously. Second, a fortification of mountain fortress built by using unit building stone is a structure of masonry construction like brick construction, and the valley part of it is where the construction of the fortification begins. Third, when it comes to build a fortification at the valley part of a mountain, it seems that they use a temporary method such as coffer dam in oder to prevent the collapse of the fortification due to heavy rain. Furthermore, in response to a horizontal pressure a fortification is built by the way of its plane make an arch, or by piling up the soil with the plate method(類似版築) and earthen wall harder method(敷葉) they increase cross-sectional area of the fortification and its cutoff capacity. In front direction they put the reservoir facility for the fear that the hydraulic pressure and earth pressure are directly transmitted to the fortification. The process of constructing the fortification at the valley part of a mountain is done in the same oder as follows; leveling of ground(整地) ${\Rightarrow}$ construction of coffer dam ${\Rightarrow}$ construction of the fortification between the both banks of the valley ${\Rightarrow}$ construction of the fortification at bottom part of spill way(餘水路) between the both banks of the valley ${\Rightarrow}$ construction of spill way(餘水路) & reservoir facility ${\Rightarrow}$ construction of the fortification at upper part of spill way between the both banks of the valley. Coffer dam facility seems to be not only the protection device on occasion of flood but also an important criterion to measure the proper height of spill way or tailrace(放水路). This study has a meaningful significance in that it empirically examines the method of reduction of the horizontal pressure which the fortification at the valley part of a mountain takes, the date the construction was done, and wether the changes in climate such as heavy rainfall influence the process of construction.