• Title/Summary/Keyword: water-bottom properties

Search Result 207, Processing Time 0.023 seconds

Dielectric properties of Pt/PVDF/Pt modified by low energy ion beam irradiation

  • Sung Han;Yoon, Ki-Hyun;Jung, Hyung-Jin;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.110-110
    • /
    • 1999
  • Polyvinylidenefluoride (PVDF) is most used in piezoelectric polymer industry. Electrode effect on the electrical properties of PVDF has been investigated. al has been used due to fair adhesion for PVDF. Work function of metal plays an important role on the electrical properties of ferroelectrics for top and /or bottom electrode. However, Al has much lower work function than Pt or Au and so leakage current of Al/PVDF/Al may be large. Pt or Au has not been used for electrode of PVDF system due to poor adhesion. PVDF irradiated by Ar+ ion beam with O2 environment takes good adhesion to inert metal. Contact angle of PVDF to triple distilled water was reduced from 75$^{\circ}$ to 31$^{\circ}$ at 1$\times$1015 Ar+/cm2. Working pressure was 2.3$\times$10-4 Torr and base pressure was 5$\times$10-6 Torr. Pt was deposited by ion beam sputtering and thickness of pt film was about 1000$\AA$. in previous study, enhancing adhesion of Pt on PVDF was shown. in this study, effect of electrode on PVDF will be represented.

  • PDF

Cloud Generation Using a Huge Vertical Mine

  • Ma, Chang-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E2
    • /
    • pp.78-88
    • /
    • 2006
  • In order to study the characteristics of cloud, a real-scale experiment for cloud generation was carried out using an extinct vertical mine (430 m height) located in the northeastern Honshu, Japan. The dry particles generated from the three-step concentrations of NaCl solutions were used for cloud generation. The number size distributions of initial dry particles and cloud droplets were monitored by Scanning Mobility Particle Sizer (SMPS) and Forward Scattering Spectrometer Probe (FSSP) at bottom and upper sites of pit, respectively. The polymeric water absorbent film (PWAF) method was employed to measure liquid water content ($W_L$) as a function of droplet size. Moreover the chemical properties of individual droplet replicas were determined by micro-PIXE. The CCN number concentration shows the lognormal form in dependence of the particle size, while the number size distributions of droplets are bimodal showing the peaks around $9{\mu}m$ and $20{\mu}m$ for every case. In comparison to background mineral particles, right shifting of size distribution line for NaCl particles was occurred. When NaCl solutions with three-step different concentrations were neulized, $W_L$ shows the strong droplet size dependence. It varied from $10.0mg\;m^{-3}$ up to $13.6mg\;m^{-3}$ with average $11.6mg\;m^{-3}$. A good relationship between $W_L$ and cloud droplet number concentration was obtained. Both chemical inhomogeneities (mixed components with mineral and C1) and homogeneities (only mineral components or C1) in individual droplet replicas were obviously observed from micro-PIXE elemental images.

An experimental study of heat transfer with $Na_4P_2O_7{\cdot}10H_2O$ as P.C.M. ($Na_4P_2O_7{\cdot}10H_2O$의 축열방열시 열전달 특성에 관한 실험적 연구)

  • Lee, C.M.;Yim, C.S.
    • Solar Energy
    • /
    • v.9 no.1
    • /
    • pp.70-77
    • /
    • 1989
  • Sodium pyrophosphate that melting point is $79-80^{\circ}C$ have been Studied on heat storage and heat discharge. In heat storage process, sodium pyrophosphate was kept up initial temperature $50^{\circ}C,\;60^{\circ}C,\;70^{\circ}C$ which melt by heated water at temperature $85^{\circ}C,\;90^{\circ}C,\;95^{\circ}C$. In heat discharge process, initial temperature of sodium pyrophosphate was maintained at temperature $85^{\circ}C,\;90^{\circ}C,\;95^{\circ}C$ which varied cooling temperature $50^{\circ}C,\;60^{\circ}C,\;70^{\circ}C$. The experiment has been reached conclusions as follows. 1) Heat transfer properties of phase change material is controlled by conduction during heating and cooling process. 2) The temperature increased rapidly at initial stage and transient region increase slowly because of characteristic of latent heat. 3) The lower cooling water temperature is the less the time that get to thermal equivalent state take during discharge process. 4) The higher cooling water temperature is the less temperature difference between top and bottom in P.C.M during discharge process.

  • PDF

Feasibility Study on CLSM for Emergency Recovery of Landfill Bottom Ash (매립장 석탄회의 긴급복구용 CLSM으로 활용 가능성)

  • Ha-Seog Kim;Ki-Suk Kim
    • Land and Housing Review
    • /
    • v.14 no.2
    • /
    • pp.137-145
    • /
    • 2023
  • In this study, the characteristics such as flowability, bleeding rate, and strength of the CLSM (Controlled Low Strength Material) according to physical properties such as particle size distribution and particulate content of the pond ash were investigated as part of the practical development of technology for CLSM using pond ash. As a result of analyzing the properties of the collected pond ash, it was found that the density and particle size distribution characteristics were different. And that the bleeding ratio did not satisfy the standard in the case of the specimen with a large amount of fly ash and a lot of addition of mixing water. As a result of the compressive strength test, the strength development of 0.5 MPa or more for four hours was found to be satisfactory for the specimens using hemihydrate gypsum with a unit binder amount of 200 or more, and the remaining gypsum showed poor strength development. Although it was determined that landfill coal ash can be used as a CLSM material, it is necessary to identify and apply the physical and chemical characteristics of coal ash buried in the ash treatment plant of each power generation company.

Engineering Properties of Sound Absorbing Foamed Concrete Using Bottom Ash Depending on Mix Factors (배합요인에 따른 바텀애시 미분말을 사용한 흡음형 기포콘크리트의 공학적 특성)

  • Kim, Jin-Man;Kang, Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.63-70
    • /
    • 2009
  • This study is part of an ongoing research project on the development of a sound-absorbing lightweight foamed concrete manufactured by a hydro-thermal reaction between silica and calcium. As the silica source, pulverized bottom ash was used, and as several cementitious powders of ordinary portland cement, alumina cement and calcium hydroxide were used. Manufacture of foamed concrete was accomplished using the pre-foaming method to make a continuous pore system, which is the method of making the foam by using a foaming agent, then making the slurry by mixing the foam, water, and powders. The experiment factors are W/B, foam agent dilution ratio, and foam ratio, and test items are compressive strength, dry density, void ratio, and absorption rate, as evaluated by NRC. The experiment results showed that the sound absorption of lightweight foamed concrete satisfied NRC requirements for the absorbing materials in most of the experiments. It is thus concluded that foam ratio was the most dominant factor, and significantly affected all properties of lightweight foamed concrete in this study. W/B rarely affected total void ratio and continuous void ratio as well as compressive strength, and dry density and foam agent dilution ratio also had little effect onalmost all properties. The analysis of the correlation between NRC, absorption time, continuous void ratio, and absorption time showed that the interrelationship of the continuous void ratio was high.

Effect of Combined Application of Bottom Ash and Compost on Heavy Metal Concentration and Enzyme Activities in Upland Soil (밭 토양에서 바닥재와 축분퇴비의 혼합시용이 토양의 중금속 함량 및 효소활성에 미치는 영향)

  • Kim, Yong Gyun;Lim, Woo Sup;Hong, Chang Oh;Kim, Pil Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.262-270
    • /
    • 2014
  • BACKGROUND: Coal combustion bottom ash(BA) has high carbon and calcium content, and alkaline pH, which might improve nutrient cycling in soil related to microbial enzyme activities as it is used as soil amendment. However, it contains heavy metals such as copper(Cu), manganese (Mn), and zinc(Zn), which could cause heavy metals accumulation in soil. Compost might play a role that stabilize BA. The objective of this study was to evaluate effect of combined application of BA and compost as soil amendment on heavy metals concentration, enzyme activities, chemical properties, and crop yield in upland soil. METHODS AND RESULTS: BA was applied at the rate of 0, 20, 40, and 80 Mg/ha under different rate of compost application (0 and 30 Mg/ha) in radish (Raphanus sativus var) field. Combined application of BA and compost more improved chemical properties such as pH, EC, OM, total nitrogen, available phosphate, and exchangeable cations of soil than single application of BA. Water soluble Mn and Zn concentration in soil significantly decreased with increasing application rate of BA. Decrease in those metals concentration was accelerated with combined application of BA and compost. Urease and dehydrogenase activities significantly increased with increasing application rate of BA. Phosphotase activities were not affected with single application of BA but increased with combined application of BA and compost. Radish yield was not affected by application rate of BA. CONCLUSION: From the above results, combined application of BA and compost could be used as soil amendment to improve chemical properties and enzyme activities of soil without increase in heavy metal concentration and decrease in crop yield in upland soil.

Effect of solution temperature on the mechanical properties of dual-cure resin cements

  • Kang, En-Sook;Jeon, Yeong-Chan;Jeong, Chang-Mo;Huh, Jung-Bo;Yun, Mi-Jung;Kwon, Yong-Hoon
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.133-139
    • /
    • 2013
  • PURPOSE. This study was to evaluate the effect of the solution temperature on the mechanical properties of dualcure resin cements. MATERIALS AND METHODS. For the study, five dual-cure resin cements were chosen and light cured. To evaluate the effect of temperature on the specimens, the light-cured specimens were immersed in deionized water at three different temperatures (4, 37 and $60^{\circ}C$) for 7 days. The control specimens were aged in a $37^{\circ}C$ dry and dark chamber for 24 hours. The mechanical properties of the light-cured specimens were evaluated using the Vickers hardness test, three-point bending test, and compression test, respectively. Both flexural and compressive properties were evaluated using a universal testing machine. The data were analyzed using a two way ANOVA with Tukey test to perform multiple comparisons (${\alpha}$=0.05). RESULTS. After immersion, the specimens showed significantly different microhardness, flexural, and compressive properties compared to the control case regardless of solution temperatures. Depending on the resin brand, the microhardness difference between the top and bottom surfaces ranged approximately 3.3-12.2%. Among the specimens, BisCem and Calibra showed the highest and lowest decrease of flexural strength, respectively. Also, Calibra and Multilink Automix showed the highest and lowest decrease of compressive strength, respectively compared to the control case. CONCLUSION. The examined dual-cure resin cements had compatible flexural and compressive properties with most methacrylate-based composite resins and the underlying dentin regardless of solution temperature. However, the effect of the solution temperature on the mechanical properties was not consistent and depended more on the resin brand.

Convective Heat Transfer to Water near the Critical Region in Horizontal Rectangular Ducts (수평 직사각 덕트 내 임계점 부근 물의 대류열전달 특성)

  • Lee, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.477-485
    • /
    • 2012
  • Fluid flow and heat transfer in horizontal ducts are strongly coupled with large changes in thermodynamic and transport properties near the critical region as well as the gravity force. Numerical analysis has been carried out to investigate convective heat transfer in horizontal rectangular ducts for water near the thermodynamic critical point. Convective heat transfer characteristics, including velocity, temperature, and the properties as well as local heat transfer coefficients along the ducts are compared with the effect of proximity on the critical point. When there is flow acceleration because of a density decrease, convective heat transfer characteristics in the ducts show transition behavior between liquid-like and gas-like phases. There is a large variation in the local heat transfer coefficient distributions at the top, side, and bottom surfaces, and close to the pseudocritical temperature, a peak in the heat transfer coefficient distribution resulting from improved turbulent transport is observed. The Nusselt number distribution depends on pressure and duct aspect ratio, while the Nusselt number peak rapidly increases as the pressure approaches the critical pressure. The predicted Nusselt number is also compared with other heat transfer correlations.

Wave Propagations in the Underwater Anechoic Basin in KRISO (무향 수조 내에서의 음파 전파 특성 연구)

  • 김시문;최영철;박종원;임용곤
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.363-368
    • /
    • 2001
  • Because of rapid damping of light and electromagnetic wave, acoustic wave has been widely used for underwater communication. However, the propagation of the acoustic wave is highly dependent on the environment such as water properties(temperature, pressure, salinity), bottom and surface conditions, etc.. This paper deals with the surface reflection effect on the wave propagation in the underwater anechoic basin in KRISO. Both theortical and experimental approaches are performed and the results are compared.

  • PDF

Impact of Seawater Inflow on the Temperature and Salinity in Shihwa Lake, Korea (배수갑문 운용에 따른 시화호의 수온과 염분 변화)

  • Choi, Jung-Hoon;Kim, Kye-Young;Hong, Dae-Byuk
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.541-552
    • /
    • 2000
  • The variations of physical properties due to inflow of seawater by sluice gates operation were observed in Shihwa Lake. The distributions of salinity and temperature were investigated at 11 stations during February, 1997 to July, 1998. The salinity of water mass in Shihwa Lake before gate operation was ranged below 15psu and strong stratification due to inflow of seawater was observed at the depth of 11 m. In July 1997, temperature difference of 10^{\circ}C$ was occurred between the surface and bottom water due to strong solar radiation. During October 1997 to February 1998, inversion of temperature distribution, which the temperature of bottom water was higher than that of surface water, was observed. In July 1997, temperature, salinity, current speed and current direction were investigated by RCM-7 at St.3 for 56 days. When sea water was intruded in Shihwa Lake, the symmetric distribution of temperature and salinity was observed and it seems to be resulted from inflow of seawater with low temperature and high salinity. After January 1998, salinity of Shihwa Lake was increased over 30psu due to continuous gate operation and the stratification was weakened.

  • PDF