• Title/Summary/Keyword: water yield

Search Result 2,903, Processing Time 0.029 seconds

Upgrading the Measurement Method of Biodegradable Dissolved Organic Carbon in Natural Water or Drinking Water (자연수 및 먹는 물 중의 생물학적 분해가능한 용존유기탄소의 측정방법 개선에 관한 연구)

  • 이윤진;윤재섭;박준석;남상호
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.3
    • /
    • pp.34-41
    • /
    • 2001
  • It is well known that bioassay on the low organic matters in water have developed from the two methods. One is assimilable organic carbon(AOC) that makes use of the maximum growth biomass of the pure strains for the standard substrates, the other is biodegradable dissolved organic carbon(BDOC) that determines the fraction of dissolved organic carbon(DOC) available for microbial utilization. The purpose of this study was to upgrade the measurement method of BDOC in natural water or drinking water. BBOC was determined by means of the bacterial growth and the DOC decrease at the same time. The origin inoculums were used to the suspended bacteria from Han River water, The initial optimum biomass and incubation time for initial DOC were induced by variation of nutrient repression and inoculums. The time reached to minimum DOC was selected as incubation time. The initial optimum biomass for Han river water was about 1000~5000 CFU/mL, respectively. In a sufficient biomass, suitable incubation time was about 3~5 day. It was indirectly calculated BDOC on maximum growth rate by measuring growth yield of indigenous bacteria. But it was difficult to adapt growth yield coefficient because of irregular bacterial growth. The measured 3 day BDOC was close to BDOC calculated with our proposed experimental equation between DOC and BDOC. It shows that the quantification of BDOC with this experimental equation can be used indirectly.

  • PDF

A Two-stage Process for Increasing the Yield of Prebiotic-rich Extract from Pinus densiflora

  • Jung, Ji Young;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.380-392
    • /
    • 2018
  • The importance of polysaccharides is increasing globally due to their role as a significant source of dietary prebiotics in the human diet. In the present study, in order to maximize the yield of crude polysaccharides from Pinus densiflora, response surface methodology (RSM) was used to optimize a two-stage extraction process consisting of steam explosion and water extraction. Three independent main variables, namely, the severity factor (Ro) for the steam explosion process, the water extraction temperature ($^{\circ}C$), and the ratio of water to raw material (v/w), were studied with respect to prebiotic sugar content. A Box-Behnken design was created on the basis of the results of these single-factor tests. The experimental data were fitted to a second-order polynomial equation for multiple regression analysis and examined using the appropriate statistical methods. The data showed that both the severity factor (Ro) and the ratio of water to material (v/w) had significant effects on the prebiotic sugar content. The optimal conditions for the two-stage process were as follows: a severity factor (Ro) of 3.86, a water extraction temperature of $89.66^{\circ}C$, and a ratio of water to material (v/w) of 39.20. Under these conditions, the prebiotic sugar content in the extract was 332.45 mg/g.

Analysis of the influence of low viscosity typed high range water reducer on rheological properties high performance cement paste depending on SCM types and contents (저점도형 고성능 감수제가 다양한 혼화재 종류 및 치환량 조건에서 고성능 시멘트 페이스트의 레올로지 성능에 미치는 영향 분석)

  • Jeon, Jong-Woon;Son, Bae-Geun;Lee, Hyang-Sun;Han, Dong-Yeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.46-47
    • /
    • 2018
  • High performance concrete with low water-to-cement ratio has been widely used with increased demand of high rising buildings and huge scaled structures. Additionally, for high performance concrete, various SCMs are replaced to improve its performance from fresh state to hardened state. With the drawback of increased viscosity of the concrete mixture for high performance concrete, low-viscosity typed high range water reducer is the relatively new admixture. Therefore, as a goal of the research, under using various SCMs with wide range of content, the performance of low-viscosity typed high range water reducer was evaluated. Especially, in this research, the influence of low-viscosity typed high range water reducer on rheological properties including plastic viscosity and yield stress were assessed. As a result of the research, it is expected to provide a fundamental information of low -viscosity typed high ranged water reducer on high performance concrete with various conditions of SCMs.

  • PDF

Endophytic Bacteria Improve Root Traits, Biomass and Yield of Helianthus tuberosus L. under Normal and Deficit Water Conditions

  • Namwongsa, Junthima;Jogloy, Sanun;Vorasoot, Nimitr;Boonlue, Sophon;Riddech, Nuntavan;Mongkolthanaruk, Wiyada
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1777-1789
    • /
    • 2019
  • Drought is more concerned to be a huge problem for agriculture as it affects plant growth and yield. Endophytic bacteria act as plant growth promoting bacteria that have roles for improving plant growth under stress conditions. The properties of four strains of endophytic bacteria were determined under water deficit medium with 20% polyethylene glycol. Bacillus aquimaris strain 3.13 showed high 1-aminocyclopropane-1-carboxylate (ACC) deaminase production; Micrococcus luteus strain 4.43 produced indole acetic acid (IAA). Exopolysaccharide production was high in Bacillus methylotrophicus strain 5.18 while Bacillus sp. strain 5.2 did not show major properties for drought response. Inoculation of endophytic bacteria into plants, strain 3.13 and 4.43 increased height, shoot and root weight, root length, root diameter, root volume, root area and root surface of Jerusalem artichoke grown under water limitation, clearly shown in water supply at 1/3 of available water. These increases were caused by bacteria ACC deaminase and IAA production; moreover, strain 4.43 boosted leaf area and chlorophyll levels, leading to increased photosynthesis under drought at 60 days of planting. The harvest index was high in the treatment with strain 4.43 and 3.13 under 1/3 of available water, promoting tuber numbers and tuber weight. Inulin content was unchanged in the control between well-watered and drought conditions. In comparison, inulin levels were higher in the endophytic bacteria treatment under both conditions, although yields dipped under drought. Thus, the endophytic bacteria promoted in plant growth and yield under drought; they had outstanding function in the enhancement of inulin content under well-watered condition.

The Measuring Experiment of Irrigation Water for Spreading Varieties of Rice Plant in Chuncheon Area (춘천지역의 장려수도품종의 용수량 측정시험)

  • 고희완
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.4
    • /
    • pp.93-105
    • /
    • 1987
  • This Study was carried out at the experimental Plot of Kang-Weon Province, Institute of Agriculture experiment, to find out Irrigation Water requirement and suitable calculating formula of evapotranspiration on Spreading Varieties of rice plant such as Seul Oak, Bokkwang and Teaback in Chuncheon Area. The evapotranspiration, infiltration, and consumptive use of water were measured by Micro Lysimeter for four years from '86yr. Also, yield of rice was investigated during same period. With the Kc Value taken from experimental value, evapotranspiration was calculated by methods of Blaney & criddle, Penman, Hargreaves and Thornthwaite by Computer using meteorological data in Chuncheon Area for twenty one yrs from '66yr to '86yr. All analyses were conducted based on average value of experiment for four years and the results are summarized as follows : 1) The yield by varieties through this experiment showed 1.06 times in Seul Oak, 1.94 times in Bokkwang and 1.89 times in Teaback more than Standard Yield. 2) The consumptive use of water including infiltration were 1.068.4mm in Seul Oak, 1,102. 6mm in Bokkwang and 1,195.6mm in Teaback 3) The evapotranspiration by Actual measurement presented 520.lmm in Seul Oak, 540.lmm in Bokkwang and 598.4mm in Teaback 4)The ratio of evapotranspiration and infiltration over Panevaporation showed 1.2 to 1.4. 5) The irrigation water reguirement by water balance were shown to be irrigated more than 584 mm / yr in average during 21 years from '66yr to '86yr for all Varieties and those for loyr frequency 693 mm in Seul Oak, 712 mm in Bokkwang and 728 mm in Teaback respectively. 6) Crop Coefficient (Ke Value) of the tested rice plant during the period were shown as Table 10. 7) Penman Method was the formula the most close to experiment Value among four different methods of Blaney & Griddle Penman, Hargreaves, and Thornthwaite.

  • PDF

Influence of Roasting Time on Antibacterial and Antioxidative Effects of Coffee Extract (배전시간에 따른 커피 추출물의 항균 및 항산화 효과)

  • Kim, Ji-Young;Han, Young-Sook
    • Korean journal of food and cookery science
    • /
    • v.25 no.4
    • /
    • pp.496-505
    • /
    • 2009
  • The influence of roasting time on antibacterial and antioxidative effects of methanol and water coffee extracts was investigated. Extract yield differed with roasting time. The maximum yield of methanol extract was 20.02% and 24.00% at respective roasting times of 12 and 20 min. The maximum yield of water extracts was 2.70% and 18.58% at 5 and 25 min roasting time, respectively. Antibacterial effects of each extract were determined by the classical minimal inhibitory concentration (MIC) paper disc diffusion method. Methanol extracts of different coffee samples inhibited growth of various strains except Escherichia coli. Extracts obtained following roasting times of 12, 14, 16, 20, and 25 min in particular displayed the most potent activity against Staphylococcus aureus. Among these extracts, that obtained from 12 min roasted coffee samples produced a MIC of $16.125{\mu}g$/mL against S. aureus. Water extracts applied at $1,000{\mu}g$/mL were growth inhibitory except against Salmonella choleraesuis and Prevotella intermedia. However, growth inhibition by water extracts was weak, with inhibitory zones of only 6-8 mm diameter produced. Determinations of free radical elimination for the different coffee extracts using 1,1-diphenyl-2-picrylhydrazyl were compared with ascorbic acid and butylated hydroxytoluene positive controls. Methanol and water extracts of different coffee samples ($100{\mu}g$/mL) showed $67.1{\sim}92.3%$ and $66.4{\sim}93.3%$ radical scavenging activity, respectively. However, longer roasting time (especially >20 min) tended to somewhat lower free radical elimination using both extracts. Total phenol in different coffee samples measured by the Folin-Denis method revealed the highest level of phenol contents with non-roasted coffee, whereas phenol content differed with different roasting time, ranging from $87.{\sim}126.5\;mg/g$ in methanol extracts. In water extracts, the phenol content was maximum at 8 min roasting time, whereas in other samples the content was varied from $95.0{\sim}199.1\;mg/g$.

Effect of Soil Textures on Fruit Yield, Nitrogen and Water Use Efficiencies of Cucumber Plant as Affected by Subsurface Drip Fertigation in the Greenhouse

  • Lim, Tae-Jun;Park, Jin-Myeon;Park, Young-Eun;Lee, Seong-Eun;Kim, Ki-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.372-378
    • /
    • 2015
  • Growing crops under different soil textures may affect crop growth and yield because of soil N availability, soil N leaching, and plant N uptake. The objective of this study was to evaluate effects of three different soils (sandy loam, loam, and clay loam) on cucumber (Cucumis sativus L.) yield, nitrogen (N) use efficiency (NUE), and water use efficiency (WUE) by subsurface drip fertigation in the greenhouse. Three different soil textures are sandy loam, loam, and clay loam with 3 replications. The dimension of each lysimeter was $1.0m(W){\times}1.5m(L){\times}1.0m(H)$. Cucumber was transplanted on April $8^{th}$ and Aug $16^{th}$ in 2011. The subsurface drip line and tensiometer was installed at 30 and 20 cm soil depth, respectively. An irrigation with $100mg\;NL^{-1}$ concentration was automatically applied when the tensiometer reading was 10 kPa. Volumetric soil water content for cucumber cultivation was the highest in 30 cm soil depth regardless of soil texture and was lowered when soil depth was deeper. The volumetric soil water contents at soil depths of 10, 30, 50, and 70 cm were the highest at clay loam, followed by loam, and sandy loam. The growth of cucumber at the $50^{th}$ day after transplanting was the lowest at sandy loam. Cucumber fruit yields were similar for all three soil textures. The highest amount of water use at sandy loam was observed. Nitrogen and water use efficiencies for cucumber were higher for clay loam, followed by loam and sandy loam, while the amount of N leaching was the greatest under sandy loam, followed by loam, and clay loam. Overall, growing cucumber on either loam or clay loam is better than sandy loam if subsurface drip fertigation is used in the greenhouse.

Characteristics of Soybean Growth and Yield Using Precise Water Management System in Jeollanam-do

  • JinSil Choi;Dong-Kwan Kim;Shin-Young Park;Juhyun Im;Eunbyul Go;Hyunjeong Shim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.79-79
    • /
    • 2023
  • With the development of digital technology, the size of the smart agriculture market at home and abroad is rapidly expanding. It is necessary to establish a foundation for sustainable precision agriculture in order to respond to the aging of rural areas and labor shortages. This study was conducted to establish an automated digital agricultural test bed for soybean production management using data suitable for agricultural environmental conditions in Korea and to demonstrate the field of leading complexes. In order to manage water smartly, we installed a subsurface drip irrigation system in the upland field and an underground water level control system in the paddy field. Based on data collected from sensors, water management was controlled by utilizing an integrated control system. Irrigation was carried out when the soil moisture was less than 20%. For effective water management, soil moisture was measured at the surface, 15cm, and 30cm depth. The main growth characteristics and yield, such as stem length, number of branches, and number of nodes of the main stem, were investigated during the main growth period. During the operation of the test bed, drought appeared during the early vegetative growth period and maturity period, but in the open field smart agriculture test bed, water was automatically supplied, reducing labor by 53% and increasing yield by 2%. A test bed was installed for each field digital farming element technology, and it is planned to verify it once more this year. In the future, we plan to expand the field digital farming technology developed for leading farmers to the field.

  • PDF

Optimization of Macerating Enzymatic Extraction Process and Components Change of Extract of Rubus coreanus Miq. Fruit (복분자의 효소 추출 공정의 최적화 및 성분 변화)

  • Ryu, Il Hwan;Kwon, Tae Oh
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.2
    • /
    • pp.97-104
    • /
    • 2013
  • The objective of this study is to investigate the optimal condition for macerating enzymatic extraction process that leads to the highest yield and the largest extracted amount of bio-active contents from Rubus coreanus Miq. fruit. The optimal extraction conditions were found as the following: The initial amount of the water added to the fruit was 20 ~ 30% by weight. The mixing ratio used for the macerating enzyme was 4 : 1 : 2 (w : w : w) for cellulase:pectinase:amylogucosidase, and the amount of the macerating enzyme added was 2% by weight. The extraction process was done at a temperature of $45{\sim}50^{\circ}C$ for 10 hours. The extraction yields on Rubus coreanus Miq. fruit by macerating enzymatic extraction process was increased by 84.3% compared to that of hot-water extraction process. The amounts of organic acids and vitamin found in the extract were also higher. The amount of polyphenol and anthocyanin contents in the extract were 185% and 257% of those from hot-water extraction, respectively. These results suggest that macerating enzymatic extraction is an effective method to boost extraction yield and to increase the amount of extraction of bio-active contents from Rubus coreanus Miq. fruit.

Comparison of Agricultural Characteristics and Seed Quality for Suitable Natto Varieties

  • Namgeol Kim;Inhye Lee;Yo-Han Yoo;Hong-Tae Yun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.326-326
    • /
    • 2022
  • Natto is a soybean fermented food from Japan, which is made from steamed soybean, Bacillus natto and water. Demand of Natto has increased recently because it does not have smell compared to Cheonggukfang, which is Korean traditional fermented food. Currently, Pungsannamulkong is the most commonly used in Korea for Natto. Four candidate varieties of soybeans were investigated and compared in terms of Agronomic Traits, quality characteristics, hard seed rate, and water absorption rate in order to determine more suitable Korean soybean variety than pungsannamulkong. 'Haewon' had higher yield than other three varieties in Goesan-gun and Jinan-gun. The infected seed rate which affects soybean processing is higher in pungsannamulkong. 'Haewon' showed low 100 seed weight with 8.6 g in Goesan-gun and 9.5 g in Jinan-gun, which was the smallest of four soybean varieties. The water absorption rate was higher in 'Haewon' than in pungsannamulkong which is desirable characteristics for Natto process. The hard seed rate of pungsannamulkong was 6~7%, which is considered to be unsuitable to Natto process. The yield of Natto was significantly different for each variety. 'Haewon' showed the highest amino nitrogen content with 575.0 mg%. These results suggested that 'Haewon' can be considered as suitable candidates for yield and quality of Natto compared to pungsannamulkong.

  • PDF