• Title/Summary/Keyword: water waste treatment

Search Result 863, Processing Time 0.027 seconds

Purification and Utilization of Industrial Waste Water Using Microorganism -(Part 1) Isolation of the yeast strain from organic waste water and its use on waste water treatment- (산업폐수의 처리 및 이용에 관한 연구 -(제 1 보) 효모균주의 분리와 이에 의한 유기성폐수의 처리에 관하여-)

  • Lee, Kang-Heup;Yim, Sung-Sam;Park, Tai-Won
    • Applied Biological Chemistry
    • /
    • v.20 no.2
    • /
    • pp.228-235
    • /
    • 1977
  • The yeast strain was isolated from food industry waste water and its identification and biological characteristics were investigated. The optimum condition for cultivations and its activities for the reduction of B.O.D. on the food industry waste water were also confirmed. The results are as follows; 1) The isolated was identified as Candida curvata. 2) Candida curvata grew well in all of the experimented media, so and it can be regarded as a useful strain in the treatment of food industry waste water. 3) There was only a slight difference in the induction period between sterilized cultivation and unsterilized cultivation. But in the ice cream waste water, the period was considerably longer in unsterilized cultivation. 4) Specific rate of growth of Candida curvata in sugar waste water was 0.50/hr, ice cream waste water 0.50/hr, and beer waste water 1.0/hr. 5) Increasing of innoculum reduced the induction period in unsterilized cultivation. 6) The amount of dried yeast from sugar waste water were $175mg/{\ell}$, ice cream waste water $628mg/{\ell}$, and beer waste water $857mg/{\ell}$. Crude protein content in the dried yeast from sugar waste water were 52%, ice cream waste water 54%, and beer waste water 54%. 7) The rate of BOD reduction in sugar waste water were 49%, ice cream waste water 80%, and beer waste water 64%.

  • PDF

Piggery Waste Treatment using Improved MLE Process in Full-Scale (수정된 MLE 공정을 이용한 Full-Scale에서의 돈사분뇨처리)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.895-904
    • /
    • 2006
  • The improved MLE (modified Ludzack-Ettinger) process was operated for piggery waste treatment in full-scale public livestock waste treatment plant. The treated waste from bioreactor was suitable for the strict effluent standard of 200 mgCOD/L and 60 mgTN/L as it was dewatered chemically without settling tank and passed through filtration process. Though this treatment method produced a great deal of sludge ($6.4m^3\;per\;m^3$ dewatered piggery waste) it was able to accomplish predominant effluent quality by removing non-biodegradable COD and color without advanced oxidation process as ozone, fenton and etc.. The nitrogen removal efficiency of bioreactor was rapidly declined from March to May (from 0.016 to 0.005 kgN/kgVSS-day) when disinfection is in earnest as well as from warm season when reactor temperature rises higher than $35^{\circ}C$(from 0.016 to 0.008 kgN/kgVSS-day). This study proves that counterplanes for infection residuals, bioreactor temperature and dewatering sludge reduction are necessary for piggery waste treatment.

Treatment of Concrete Wastewater in Repair of Bridge Deck (교량 바닥판 보수공사에서 발생하는 콘크리트 폐수처리 방안)

  • Lee, Bong-Hak;Choi, Pan-Gil;Kim, Jung-Ki
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.125-132
    • /
    • 2008
  • As of 2003, construction waste has been produced at the level of 130,614.8 tons/day, in which the amount of waste concrete was 92,639.1 tons/day and accounted for about 66.4% of the amount of construction waste. Waste concrete is mainly produced in construction work and civil engineering work. Especially, road surface crushing method using a large amount of water requires thorough management of concrete wastewater. The aim of this study was to analyze water pollution due to concrete wastewater generated in repair of bridge deck using road surface crushing equipment and to suggest reasonable countermeasures for solve the problem. In this study, it was surveyed current conditions of produced concrete wastewater in bridge deck repair, analyzed physical features of concrete wastewater, expected effects of water pollution on inflow rivers if it is not treated, established treatment plan of water pollution by categories, and calculated capacity of each treatment process and required amount of necessary chemicals. As a result of sampling wastewater generated in field sites and testing it at a lab scale, it was revealed that the original wastewater was produced in removing concrete from bridge deck slabs using surface crushing equipment whose pH was 12.53, CODMn was 12.910mg/L, SS was 547.0mg/L, and other heavy metals were included in extremely small quantities.

  • PDF

하수처리에 관한 금후의 방향

  • Il, Bon-Myeong
    • Journal of the Korean Professional Engineers Association
    • /
    • v.15 no.2
    • /
    • pp.43-44
    • /
    • 1982
  • What I would like to expect about this mater is that Korea would develop unique techniques of the waste water which are most suitable to social and other relevant conditions of that country, not entirely following models of sewerage construction of U.S.A. or European countries or Japan. Some cements will be made in the followings: (1) The investigation for the diffusion of seperated simple public sewerag, not the large scale sewerage treatment plant. (2) The plan for non-mixed treatment of lining waste water and industrial waste water. (3) Suggestion for "a man of ability" at the university education to cultivate a technologist of facilities and the elemental watchman at the sewerage maintenance.

  • PDF

Analysis of Waste Water and Isolation of Strains Assimilation Waste Water from Acetaldehyde Plant (아세트 알데히드(특수산업) 공장폐수의 성분과 이용균주의 분리)

  • 정기택;서승교;송형익;박임동;방광웅
    • Korean Journal of Microbiology
    • /
    • v.25 no.4
    • /
    • pp.328-332
    • /
    • 1987
  • As a research for treatment of waste water from acetaldehyde plant by biological method, we investigated general characteristics of the waste water, and isolated and identified some useful bacteria which effectively treated its waste water. Among the total number of 53 strains which were grown in waste water from an acetaldehyde plant, the strains AW-6, AW-22, AW-38 and AW-41 were found to be useful for COD removal of waste water. $COD_{Mn}$ and $BOD_{5}$ of the waste water were 5260 ppm and 6452 ppm, respectively, and pH was 1.85. And the main organic component in waste water was acetic acid which was contained 6.76%. By the taxonomical characteristics, the strains AW-6, AW-22, AW-38 and AW-41 were identified as Micrococcus roseus, Micrococcus luteus, Microbacterium lacticum and Microbacterium laevanifromans or similar strain, respectively.

  • PDF

A Experimental Study on Waste Water Concentration by Separating Method of Freezing (동결분리방법을 이용한 폐수농축에 관한 실험적 연구)

  • Kim, Jung-Sik
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.51-52
    • /
    • 2006
  • This study was progressed on the freezing behavior of waste water in relation to freeze concentration method useful to waste water treatment system of small and middle size and which can re-use purified water. The object of this experiment is comparing a pollutant contain of the frozen layer and of an aqueous solution by cooling wall temperature, a flow field effect and a initial thickness of frozen layer.

  • PDF

Removal of Phosphorus by Blast Furnace Slag as a Filter Medium in a Self-Purifying Swage Treatment System (제강 슬래그를 여재로 사용한 자연정화 하수처리장의 인(P)제거 효과)

  • Chung, Dong Yang
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.2
    • /
    • pp.68-74
    • /
    • 2004
  • A blast furnace slag(BFS) has been used as a filter medium for the treatment of domestic waste waters during the period of 9-month. More than 90% of phosphorus was removed while the hardness of the treated water increased by 5 times and the pH was significantly raised from 6.8 to 10.8. The high hardness and pH of the treated water indicated dissolution of BSF by the sewage. The experimental results suggest that BFS could be utilized for the removal of phosphorus in the waste water treatment plant using aquatic plants and gravels.

Effect of chemical treatment and variations of the physical properties of waste water-soluble cutting oil (폐 수용성 절삭유의 화학처리효과 및 물성변화)

  • Sin, Chun Hwan;Jang, Jeong Guk
    • Journal of Environmental Science International
    • /
    • v.13 no.4
    • /
    • pp.403-412
    • /
    • 2004
  • Waste water-soluble cutting oil was treated with WI type #1 and WI type #2. The properties of the original water-soluble cutting oil were pH=l0.4, viscosity=1.4cP, CODcr=44,750 ppm, and TOC=10,569 ppm. However, the properties of the oil used for more than 3 months were changed to pH=7.82, viscosity=2.1cP, CODcr=151,000 ppm, and TOC=74,556 ppm. It might be attributed to the fact that molecular chains were cut due to thermal oxidation and impurities such as metal chips were incorporated in to the oil during the operation processes. To prevent the putrefaction of oil, the sterilization effect of ozone and UV on the microorganism in the oil was investigated. Ozone treatment showed that 99.99% of the microorganism was annihilated with 30 minutes contact time and 60 minutes were necessary for the same effect when UV was used. Ozone treatment could cut molecular chains of the oil due to strong sterilization power, which was evidenced by the increase of TOC from 25,132 ppm at instantaneous contact to 28,888 ppm at 30 minutes contact time. However, UV treatment didn't show severe changes in TOC values and thus, seemed to cause of severe cut of molecular chains. When the activated carbon was used to treat the waste water-soluble cutting oil, TOC decreased to 25,417 ppm with 0.lg carbon and to 15,946 ppm with 5.0g carbon. This results indicated that the waste oil of small molecular chains could be eliminated by adsorption. From the results, it could be concluded that these treatment techniques could be proposed to remove the waste oil of small molecular chains resulting in the degradation of the oil properties. In addition, these experimental results could be used for the correlation with future works such as investigation of the molecular distribution according to the sizes, lengths, and molecular weight of the chains.

Effect of Temperature and Pre-treatment for Elutriated Acidogenic Fermentation of Piggery Waste (돈사폐수의 세정산발효시 온도와 전처리의 영향)

  • Bae, Jin-Yeon;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.34-39
    • /
    • 2005
  • The performance of elutriated acid fermentation with slurry-type piggery waste was investigated, especially to evaluate the effects of temperature and pre-treatment. In the first phase, the acid elutriation reactor with piggery waste after centrifugation operated at both mesophilic and thermophilic conditions to evaluate the effect of temperature. Solubilization yield($gVFAs/gSCOD_{prod.}$) and acidification rate($gVFAs/gSCOD_{prod.}$) in the thermophilic digestion were 0.45 and 0.55, which were higher than those of the mesophilic digestion, 0.25 and 0.45. In addition, the acid elutriation reactor at thermophilic temperature is more effective in removing e-coli. In the second phase, the acid elutriation reactor was fed with piggery waste before centrifugation. With piggery wastes before centrifugation, the solubilization yield and the acidificaton rate were 0.40 and 0.80, respectively, which were higher than the rates using piggery waste after centrifugation at both mesophilic and thermophilic conditions. The higher sludge volume reduction of 80% benefits sludge management. Furthermore, economical advantages can be achieved by removing the pre-treatment process, such as centrifugation. Consequently, the treatment with piggery waste before centrifugation proved to be effective. Also, the optimum temperature condition was estimated at mesophilic or thermophilic conditions, considering solubilization yields and acidification rates, though the system should be heated.

A Study on the Electrochemical Properties of Water-soluble Waste Cutting Oil using Boron-Doped Diamond Electrodes (붕소도핑 다이아몬드 전극을 이용한 수용성 폐절삭유의 전기화학적 특성연구)

  • J.H., Park;T.G., Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.6
    • /
    • pp.337-342
    • /
    • 2022
  • In metal cutting, water-soluble cutting oil is used for cooling the surface of the workpiece and improving the surface roughness. However, waste cutting oil contains preservatives and surfactants, and if it is discarded as it is, it has an great influence on environmental pollution. For this reason, regulations on the use of cutting oil are being stricter. Hence, the development of eco-friendly treatment technologies is required. In this study, a diamond electrode doped with boron on a niobium substrate was deposited by thermal filament chemical vapor deposition and waste cutting oil was treated using an electrochemical method. Compared to the total amount of organic carbon contained in the waste cutting oil, it was confirmed that the boron-doped diamonds developed from this study showed much better performance than electrodes that has been widely used before.