• Title/Summary/Keyword: water usage

Search Result 741, Processing Time 0.031 seconds

Features of Stream-water Usage in Nakdong River Basin (낙동강유역의 하천수 사용 특성)

  • Choe, Gyu-Hyeon;Hong, Seong-Hun
    • Water for future
    • /
    • v.45 no.4
    • /
    • pp.59-63
    • /
    • 2012
  • 낙동강홍수통제소는 1987년 3월 개소 이후, 하천유량관리 업무를 체계적으로 하기 위해 1999년 8월 국가하천의 하천수 사용허가 업무가 우리 소로 이관되었고 2008년 4월 지방하천으로 확대되었다. 이로 인해 수문조사, 홍수예보 이외에도 하천유량 관리 업무의 제도적 개선을 통해 국기 물관리 전문기관으로서의 기틀이 마련되었다. 본 연구에서는 유역 중심의 합리적인 물사용과 물이용의 형평성을 위해 기존 국가하천 및 지방하천의 하천수 사용허가 자료를 현행하고 그 특성을 파악하려 한다. 조사 결과 낙동강유역 총 허가수리권 현황은 총 550건이고 허가량은 21.68백만$m^3$/일로 집계되었다. 그 중 농업용수가 전체 허가건수 중 약 70%, 전체 허가량 중 약 50%로 가장 높았다. 또한 하천법 상 하천수 사용 보고 대상자 건수는 전체 52%이나 허가량은 약 97%로 파악되었다. 요컨대 이번 연구를 통해 제고된 하천수 사용허가 자료는 실시간 낙동강 유역 물관리에 필요한 다양한 정책 의사 결정에 있어 기초자료로 적극 활용할 수 있을 것으로 기대한다.

  • PDF

Efficiency of Different Disinfectants against Biofilm on Carbon Steel Pipe and Carbon Utilizing Ability of Biofilm (소독제에 따른 생물막 살균효율과 생물막 미생물집단의 탄소이용능 비교)

  • Lee, Dong-Geun;Lee, Jae-Hwa;Lee, Sang-Hyeon;Ha, Bae-Jin;Ha, Jong-Myung
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.579-583
    • /
    • 2006
  • The influence of disinfectant on bacterial concentration and carbon usage patterns by Biolog GN plates were investigated for biofilm on carbon steel pipe. Heterotrophic bacterial concentrations were not different among non-, monochloramine- (1.0, 1.5 mg/l) and free chlorine- (0.5, 1.0 mg/l) treated samples (P = 0.56, ANOVA). However treatment of 1.5 mg/l free chlorine and 2.0 mg/l monochloraime showed significantly lower densities than control (P < 0.01, ANOVA). By the stepwise increasement of disinfectant concentration, the carbon usage activities of biofilm microflora were decreased after increase without the decrease of bacterial concentration, following reduction of cell density. Carbon usage patterns were qualitatively and quantitatively different with similar bacterial concentrations. Principal component analysis suggested that type and concentration of disinfectant were main factors on the usage of carbons. Our result suggest that the differences of bacterial communities were different among the samples and the need of monochloramine for the reduction of biofilm in drinking water.

Efficient Leakage Estimation of Public Agriculture Groundwater in Jeju Island (제주도 공공 농업용 지하수의 효율적 누수량 산정 연구)

  • Kim, MinChul;Park, WonBae;Kang, BongRae;Kim, JiMyung
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.1-11
    • /
    • 2020
  • In this study, leakage ratios of Jeju Island's public agricultural groundwater were calculated by utilizing field measurements of groundwater level and surface reservoir water level. The average leakage ratios were 75.6% at groundwater well A and 57.5% at well B, with the ratio inversely proportional to agricultural water usage. The level of agricultural reservoirs varied at constant intervals at night, and the amount of water leakage associated with the variation was estimated as 0.1 - 16.3 ㎥/h. The leakage ratio was also influenced by pipeline length, average slope, and number of farmhouses. Currently, the estimation of agricultural water leakage on Jeju Island is based upon field inspection which is very labor- and cost intensive. The leakage ratio estimated by monitoring the reservoirs associated with the well A and B were 73.3 and 54.7%, respectively, consistent with the values obtained by field measurements.

Technologies for the Removal of Water Hardness and Scaling Prevention

  • Ahn, Min Kyung;Han, Choon
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.73-79
    • /
    • 2017
  • In nucleation assisted crystallization process formed $CO_2$ leaves as colloid gas and is used as the template by the rapidly growing crystals in the nucleation site. This emulsion of $CaCO_3$ micro-crystals & $CO_2$ micro-bubbles forms hollow particles. Formed hollow particles are double walled, both internal and external faces belonging to the cleavage aragonites which separate the surrounding water from the enclosed gas cavity. Hence, the reverse reaction of $CO_2$ with water forming Carbonic Acid is not possible and the pH stability is maintained. In fact every excess $CaCO_3$ crystals are buffering any carbonic acid left over. This $CO_2$ based nucleation technology prevents scale formation in water channels, but it also helps to reduce the previously formed scales. This process takes out water dissolved $CO_2$ in almost-visible micro-bubbles forms that helps reducing previously formed scale over a period of time (depends on the usage period). The aragonite crystals can't form scale because of its stable molecular structure and neutral surface electro potentiality.

Prediction of Water Quality and Water Treatment in Saemankeum Lake 1. Effects of Environmental Pollutants on Filtration and Oxygen Consumption of the Marsh clam, Corbicula leana (새만금호의 수질예측과 그에 따른 대책 1. 환경 오염원이 참재첩 ( Corbicula Leana ) 의 여수작용 및 산소소비에 미치는 영향)

  • 정의영;신윤경;최문술
    • The Korean Journal of Malacology
    • /
    • v.13 no.2
    • /
    • pp.203-210
    • /
    • 1997
  • As a prioiminary study on usage of metabolic charateristics of the indicator species for indirect estimation of environmental water quality, effects of environmental pollutants on survival, filtration and oxygen consumption rates in Corbicula aeana were investigated at 17$^{\circ}C$ and $25^{\circ}C$ in 10 day afrer treatmint of pollutants. In case of glucose and complex fertilizer, the survival rates of the clams were 100% without any relation to individual sizes and water temperatures. In small sizes at $25^{\circ}C$, the survival rates of the clams by NH$_{4}$CI concentration were shown 95% at 10 mg/1 and 15mg/1, and 90% at 20mg/1, respectively. But the survival rate was 95%at 20 mg/1 of NH$_{4}$CI concentration in small size at 17$^{\circ}C$. The higher filtration and oxygin consumption rates were shown in small size at higher water timperatures(over $25^{\circ}C$), and generally filtration and oxygen consumption rates decreased with increase of glucose, complex fertilizer and NH$_{4}$CI concentrations, respectively. In general, effects of filtration and oxygen consumption rates at NH$_{4}$CI concentrations were shown slightly larger than those of glucose and complex fertilizer.

  • PDF

Development of a Low-cost Automatic Water Quality Diagnosis System for Cooling Towers (저가형 냉각탑 자동 수질 진단 시스템 개발)

  • Kim, Jung Hwan;Park, Han-Bin;Kang, Taesam;Park, Jungkeun
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.58-65
    • /
    • 2014
  • We developed a low-cost automatic diagnosis system for water quality in cooling towers to measure the concentrations of key ingredients such as $Ca^{2+}$, $Cl^-$, $PO{_4}^{3-}$, and $Fe^{2+}$. $Ca^{2+}$, and $Cl^-$ are the main factors that cause the generation of scale, corrosion, and sludge in water pipes. $PO{_4}^{3-}$ prevents corrosion, sludge and scale by inhibiting the ions (i.e., $Ca^{2+}$, $Cl^-$) from sticking to the pipes. $Fe^{2+}$ is an indicator of pipe corrosion. The proposed system consists of a microprocessor, a specimen container and heater, a precision pump, relays and valves, LED optical sources, and photo detectors. It automatically collects water samples and carries out pretreatment for determining the concentration of each chemical, and then estimates the concentration of each ion using low-cost LED optical sources and detectors. Experimental results showed that the accuracy of the proposed system is sufficiently high for water quality diagnosis and management of cooling towers, demonstrating the possibility of the proposed system's wide usage in real environments.

Flow Characteristics of a Water Supply System with Booster Pumps for an Apartment Complex (공동주택단지에 설치된 부스터펌프 급수설비계통의 유동 특성)

  • Oh, Yang-Gyun;Jeong, Jae-Bong;Park, Mi-Ra;Cha, Dong-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.151-156
    • /
    • 2008
  • Water flow characteristics of an apartment complex consisting of 12 buildings and 635 units in total have been investigated numerically. The complex incorporates two zone booster pump water supply system, and some units have pressure reducing valves in them. Input data to a commercial code Flowmaster7 include survey results on the water usage for the last three years, dimension of the water supply system and its operation condition, etc. Calculated static pressures at the inlet of all units are compared with their design and measured counterparts, and they agree quite well with each other. Then, the pressure distributions and volumetric flow rates at all 635 units are estimated. Flow balancing is also attempted by varying the ratio of angle valve of each unit to improve the non-uniformity of flows.

  • PDF

Hydraulic Analysis and Sizing of Inlet-Pipe Diameter for the Water Distribution Network (상수급수관 인입관경 제안 및 수리해석)

  • Shin, Sung-kyo;Kim, Eun-ju;Choi, Si-Hwan
    • Journal of Environmental Science International
    • /
    • v.31 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • The objective of this study is to determine the appropriate size of the inlet pipe diameter and thereby conduct hydraulic analysis for the Korean water distribution network. To this end, the data tables for equivalent pipe diameters and outflow rates presently employed in Korea were adopted. By incorporating the table of equivalent pipe diameters, it was found that the size of the inlet pipe diameter was overestimated, which can cause shortage of water pressure and malfunctioning or insufficiency of outflow rate in the corresponding adjacent region. However, by conducting hydraulic analysis based on the table of outflow rates, relatively reasonable flow rates were observed. Furthermore, by comparing the real demand-driven analysis (RDDA) approach and demand-driven analysis (DDA) approach toward managing the huge water demand, it was observed that DDA could not effectively respond to real hourly usage conditions, whereas RDDA (which reflects the hourly effects of inlet pipe diameter and storage tanks) demonstrated results similar to that of real water supply.

IoT based Electronic Irrigation and Soil Fertility Managing System

  • Mohammed Ateeq Alanezi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.146-150
    • /
    • 2023
  • In areas where water is scarce, water management is critical. This has an impact on agriculture, as a significant amount of water is used for that purpose. Electronic measurement equipment are essential for regulating and storing soil data. As a result, research has been conducted to manage water usage in the irrigation process. Many equipment for managing soil fertility systems are extremely expensive, making this type of system unaffordable for small farmers. These soil fertility control systems are simple to implement because to recent improvements in IoT technology. The goal of this project is to develop a new methodology for smart irrigation systems. The parameters required to maintain water amount and quality, soil properties, and weather conditions are determined by this IoT-based Smart irrigation System. The system also assists in sending warning signals to the consumer when an error occurs in determining the percentage of moisture in the soil specified for the crop, as well as an alert message when the fertility of the soil changes, since many workers, particularly in big projects, find it extremely difficult to check the soil on a daily basis and operate agricultural devices such as sprinkler and soil fertilizing devices.

A Study on the Evaluation of Water Consumption in Electric Appliances using Water Footprint - Focusing on Washing Machine - (Water Footprint 개념을 이용한 가전제품의 수자원 사용량 산정 (세탁기를 중심으로))

  • Jo, Hyun-Jung;Kim, Woo-Ram;Park, Ji-Hyoung;Hwang, Young-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.691-697
    • /
    • 2011
  • In this study, by using the Water footprint technique, the water consumption by washing machines, which holds higher ranks in using water than any other electric appliances, was analyzed during their life cycle. The life cycle is defined as raw materials production step, manufacturing step, and using step. In raw materials production step, Input materials were researched by using LCI DB(Life Cycle Inventory Database) and the water consumption was calculated with consideration of approximately 65% Input materials which were based weight. In manufacturing step, the water consumption was calculated by the amount of energy used in assembly factories and components subcontractors and emission factor of energy. In using step, referring to guidelines on carbon footprint labeling, the life cycle is applied as 5 years for a washing machine and 218 cycles for annual bounds of usage. The water and power consumption for operating was calculated by referring to posted materials on the manufacture's websites. The water consumption by nation unit was calculated with the result of water consumption by a unit of washing machine. As a result, it shows that water consumption per life cycle s 110,105 kg/unit. The water consumption of each step is 90,495 kg/unit for using, 18,603 kg for raw materials production and 1,006 kg/unit for manufacturing, which apparently shows that the using step consume the most water resource. The water consumption by nation unit is 371,269,584tons in total based on 2006, 83,385,649 tons in both steps of raw material production and manufacturing, and 287,883,935 tons in using step.