• 제목/요약/키워드: water treatment membrane

검색결과 1,136건 처리시간 0.021초

Effects of ion-exchange for NOM removal in water treatment with ceramic membranes ultrafiltration

  • Kabsch-Korbutowicz, Malgorzata;Urbanowska, Agnieszka
    • Membrane and Water Treatment
    • /
    • 제3권4호
    • /
    • pp.211-219
    • /
    • 2012
  • To enhance the efficiency of water treatment and reduce the extent of membrane fouling, the membrane separation process is frequently preceded by other physico-chemical processes. One of them might be ion exchange. The aim of this work was to compare the efficiency of natural organic matter removal achieved with various anion-exchange resins, and to verify their potential use in water treatment prior to the ultrafiltration process involving a ceramic membrane. The use of ion exchange prior to ceramic membrane ultrafiltration enhanced final water quality. The most effective was MIEX, which removed significant amounts of the VHA, SHA and CHA fractions. Separation of uncharged fractions was poor with all the resins examined. Water pretreatment involving an ion-exchange resin failed to reduce membrane fouling, which was higher than that observed in unpretreated water. This finding is to be attributed to the uncharged NOM fractions and small resin particles that persisted in the water.

시흥정수장 막여과시설 시범운영 (A Demonstrative Operation of A Membrane Filtration System in Siheung Water Treatment Plant)

  • 김한승;김충환;김학철;윤재경;안효원
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 Workshop
    • /
    • pp.57-68
    • /
    • 2004
  • A demonstrative operation of a membrane system with its caparity of 3,600m$^3$/d was carried out using reservoir water as raw water for the application of membrane filtration system to drinking water treatment. The operation was undertaken at a constant flux of 0.9 m$^3$/m$^2$/d for three months. Backwashing with NaClO of 3 ppm was allowed for 30 seconds every 20 minutes of filtration. Physical cleaning was introduced after 69 times of filtration/backwashing cycle with air-scrubbing and backwashing for 1 minute, and flushing for 2 minutes. In this study, water treatment performance was investigated compared with the existing rapid sand filtration process. The membrane system was operated with no significant problems during the test period. Higher water quality was obtained in the membrane filtration than in the rapid sand filtration in terms of particulate matters such as turbidity and microbes. Although the finished water of the membrane filtration contained slightly higher concentration in dissolved matters than that of the conventional one, it met the drinking water standard. The demonstrative operation showed that membrane filtration has a reliability in drinking water treatment. Researches should be needed on cost analysis through long-term operation and optimization of operation condition for further application.

  • PDF

침지식 막여과 공정을 이용한 정수장 배출수 처리에 관한 연구 (A study about treatment for water treatment residual sludge using submerged membrane system)

  • 김준현;이주형;문백수;곽영주;장정우;김진호
    • 상하수도학회지
    • /
    • 제28권2호
    • /
    • pp.181-193
    • /
    • 2014
  • Various treatment system for residuals have applied to save water resources, but most of them were not be satisfied with legal standard consistently. In this study, submerged membrane treatment system was operated to treat water treatment plant residuals and operation parameters was evaluated. Result of this experiment, high concentration organic matters contributed to high increase Transmembrane pressure(TMP) of membrane system(from 0.05 bar to 0.35 bar). And backwash process was effective to stabilize membrane system operation. After Cleaning-In-Place(CIP), permeability was recovered about 100 % from first operation condition. Inorganic matters (Fe, Mn, Al, Ca, Mg) were not effective membrane filtration performance. The quality of residual treatment was satisfied with drinking water quality standard and a treated water from that system was suitable for water reuse.

Recent Progress in Surface Science and Its Application in Advanced Water Treatment by Membrane Processes

  • Matsuura, Takeshi
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1997년도 제5회 하계 Workshop (97 한,카 국제공동 Workshop, 고도 수처리를 위한 막분리 공정)
    • /
    • pp.21-35
    • /
    • 1997
  • As environmental regulations become more stringent, water, used either as drinking water or as industrial process water, becomes increasingly better in its quality. As a result, an increasingly more advanced water treatment technology is required. It is believed that membrane technology will be able to satisfy such a requirement. The heart of the membrane technology is membrane. The advancement in water treatment technology using membranes, therefore, depends on the development of novel membranes which are superior in performance to the currently available membranes. In this paper, a brief review will be made how the recent progress in surface science, such as surface modification and surface characterization, has aided to improve the performance of the membranes used for water treatment. Some suggestions will also be made regarding the future direction of the research in this area.

  • PDF

Effect of Organic Materials in Water Treatment by Hybrid Module of Multi-channel Ceramic Microfiltration and Activated Carbon Adsorption

  • Park, Jin-Yong;Lee, Sang-Min
    • Korean Membrane Journal
    • /
    • 제11권1호
    • /
    • pp.21-28
    • /
    • 2009
  • We investigated the effect of organic materials on membrane fouling in advanced drinking water treatment by a hybrid module packed with granular activated carbon (GAC) outside multi-channel ceramic microfiltration membrane. Synthetic water was prepared with humic acid and kaolin to simulate natural water resouces consisting of natural organic matter and inorganic particles. Kaolin concentration was fixed at 30 mg/L and humic acid was changed as 2~10 mg/L to inspect the effect of organic matters. Periodic back-flushing using permeate water was performed for 10 sec per filtration of 10 min. As a result, both resistance of membrane fouling (Rf) and permeate flux (J) were influenced highly by concentration of humic acid. It proved that NOM like humic acid could be an important factor on membrane fouling in drinking water treatment. Turbidity and UV254 absorbance were removed up to above 97.4% and 59.2% respectively.

Roles of polypropylene beads and pH in hybrid water treatment of carbon fiber membrane and PP beads with water back-flushing

  • Song, Sungwon;Park, Yungsik;Park, Jin Yong
    • Membrane and Water Treatment
    • /
    • 제10권2호
    • /
    • pp.155-163
    • /
    • 2019
  • The roles of polypropylene (PP) beads and pH on membrane fouling and treatment efficiency were investigated in a hybrid advanced water treatment process of tubular carbon fiber membranes (ultrafiltration (UF) or microfiltration (MF)) and PP beads. The synthetic feed including humic acid and kaolin flowed inside the membrane, and the permeated contacted the PP beads fluidized in the space between the membrane and the module with UV irradiation and periodic water back-flushing. In the hybrid process of UF ($0.05{\mu}m$) and PP beads, final resistance of membrane fouling ($R_f$) after 180 min increased as PP beads increased. The turbidity treatment efficiency was the maximum at 30 g/L; however, that of dissolved organic matters (DOM) showed the highest at PP beads 50 g/L. The $R_f$ strengthened as pH of feed increased. It means that the membrane fouling could be inhibited at low alkali condition. The treatment efficiency of turbidity was almost constant independent of pH; however, that of DOM showed the maximum at pH 5. For MF ($0.1{\mu}m$), the final $R_f$ was the minimum at PP beads 40 g/L. The treatment efficiencies of turbidity and DOM were the maximum at PP beads 10 g/L.

Surface modification of polypropylene membrane to improve antifouling characteristics in a submerged membrane-bioreactor: Ar plasma treatment

  • Zhou, Jin;Li, Wei;Gu, Jia-Shan;Yu, Hai-Yin
    • Membrane and Water Treatment
    • /
    • 제1권1호
    • /
    • pp.83-92
    • /
    • 2010
  • To improve the antifouling characteristics of polypropylene hollow fiber microporous membranes in a submerged membrane-bioreactor for wastewater treatment, the surface-modification was conducted by Ar plasma treatment. Surface hydrophilicity was assessed by water contact angle measurements. The advancing and receding water contact angles reduced after the surface modification, and hysteresis between the advancing and receding water contact angles was enlarged after Ar plasma treatment due to the increased surface roughness after surface plasma treatment. After continuous operation in a submerged membrane-bioreactor for about 55 h, the flux recovery after water cleaning and the flux ratio after fouling were improved by 20.0 and 143.0%, while the reduction of flux was reduced by 28.6% for the surface modified membrane after 1 min Ar plasma treatment, compared to those of the unmodified membrane. Morphological observations showed that the mean membrane pore size after Ar plasma treatment reduced as a result of the deposition of the etched species; after it was used in the submerged membrane-bioreactor, the further decline of the mean membrane pore size was caused by the deposition of foulants. X-ray photoelectron spectroscopy and infrared spectroscopy confirmed that proteins and polysaccharide-like substances were the main foulants in the precipitate.

정유량 막여과 파울링 모델을 이용한 막여과 정수 플랜트 공정 진단 기법 (A process diagnosis method for membrane water treatment plant using a constant flux membrane fouling model)

  • 김수한
    • 상하수도학회지
    • /
    • 제27권1호
    • /
    • pp.139-146
    • /
    • 2013
  • A process diagnosis method for membrane water treatment plant was developed using a constant flux membrane fouling model. This diagnosis method can be applied to a real-field membrane-based water treatment plant as an early alarming system for membrane fouling. The constant flux membrane fouling model was based on the simplest equation form to describe change in trans-membrane pressure (TMP) during the filtration cycle from a literature. The model was verified using a pilot-scale microfiltraton (MF) plant with two commercial MF membrane modules (72 m2 of membrane area). The predicted TMP data were produced using the model, where the modeling parameters were obtained by the least square method using the early plant data and modeling equations. The diagnosis was carried out by comparing the predicted TMP data (as baseline) and real plant data. As a result of the case study, the diagnsis method worked pretty well to predict the early points where fouling started to occur.

Application of membrane distillation process for tap water purification

  • Gryta, Marek
    • Membrane and Water Treatment
    • /
    • 제1권1호
    • /
    • pp.1-12
    • /
    • 2010
  • Membrane distillation process was used for purification of pre-treated natural water (tap water). The rejection of inorganic and organic compounds in this process was investigated. The obtained rejection of inorganic solutes was closed to 100%, but the volatile organic compounds (VOCs) diffused through the membrane together with water vapour. The content of trihalomethanes (THMs) in the obtained distillate was two-three fold higher than that in the feed, therefore, the rejection of the total organic compounds present in the tap water was reduced to a level of 98%. The intensive membranes scaling was observed during the water separation. The morphology and composition of the fouling layer was studied using scanning electron microscopy coupled with energy dispersion spectrometry. The influence of thermal water pre-treatment performed in a heat exchanger followed by filtration on the MD process effectiveness was evaluated. This procedure caused that significantly smaller amounts of $CaCO_3$ crystallites were deposited on the membrane surface, and a high permeate flux was maintained over a period of 160 h.

UF/MF막을 이용한 고도수처리 (Advanced Water Treatment by UF/MF Membranes)

  • 김기협
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1997년도 제5회 하계 Workshop (97 한,카 국제공동 Workshop, 고도 수처리를 위한 막분리 공정)
    • /
    • pp.105-142
    • /
    • 1997
  • We know very well the importance of water. Recently, we perceive the truth that water influence the quality of products and we must pay for it. Besides, we recognize why the water treatment is indispensable for life as well as industries. The variation of environment changes the natural resources and threatens the human life. Now, we cannot get water freely from nature. We should find new processes which are effective and inexpensive. We believe that the membrane technology can suggest the new way of water treatment. I'd like to explain the situation of water resource and the membrane processes by UF/MF membranes. I'll also introduce several case studies in this lecture. Till now, about 10 MF/UF systems were established in Korea. Of course, the usage of MF/UF for water treatment is beginning stage in Korea. But the future prospect is very good. Korean government has been developed various kinds of membrane processes for the purpose of drinking water, water reuse, development of new water resources and water related technologies, etc. In near future, maybe we will meet serious water problems, water deficiency and contamination. Fortunetely, we can suggest the membrane process for solving those problems. Membrane technology will be the base of clean technology.

  • PDF