• Title/Summary/Keyword: water to cement ratio

Search Result 1,103, Processing Time 0.022 seconds

A Field Application of the Self-Compaction Concrete for Shrinkage Compensation (수축보상을 위한 자기충전 콘크리트의 현장적용)

  • Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon;Kim, Dong-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.7-12
    • /
    • 2002
  • The purpose of this study is to design and to apply the self-compaction concrete mixture to field, having not only high strength but also compensation for shrinkage without thermal crack under 4 sides outer restraint of the member. In the experimental mix, replacement ratio of limestone Powder, CSA expansive additives, and unit water were selected as parameters, using portland blast-furnace slag cement. And, bleeding test, expansibility test, hydration heat analysis were performed. As a results, when Cement is replaced with 35% limestone Powder, 6% CSA expansive additives at unit water 175kg/$m^3$, demanded performances of fresh and hardened self-compaction concrete are accomplished in the field application.

  • PDF

An Experimental Study on the Mixing and Mechanical Properties of Artificial Lightweight Aggregate(ALA) Concrete (인공경량골재 콘크리트의 배합과 역학적 성상에 관한 실험적 연구)

  • 김화중;김태섭;전명훈;안상건
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.99-104
    • /
    • 1991
  • It is necessary to generalize the use for structural ALA Concrete in our country, as increasing in the need for the development of ALA and the use of ALA Concrete which is related with the diminution of the self load and foundation section of structure responding to the realistic requirement against the decrease of natural aggregate and the high-rising and large-sizing of structures. This little study, therefore intended to help in the mixing design of concrete by considering the fundamental properties of ALA Concrete used with expanded clay, which is considered by acopting the experimental factors such as unit cement content, water cement ratio and the rate of fine aggregate. By considering the results of this experiment, it has difficulty in getting expected slump with the unit water content of normal concrete because of the large absorption of lightweight aggregate, and because the weight of unit volume and specific gravity ALA Concrete are small it appears that the strength and Elastic Modulus of that are small too and that it is more ductile than normal concrete.

  • PDF

An Experimental Study on the Air Permeabilit Effect on the Carbonation of Mortar and Concrete (모르터 및 콘크리트의 중성화에 영향을 미치는 투기계수에 관한 실험적 연구)

  • 유재강;이강우;심재형;강석표;권영진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.700-703
    • /
    • 2000
  • With respect to durability, the impotance of carbonation lies in the fact that it reduces the pH on the pore water in hardened concrete. However, the carbonation velocity is effected by the water/cement ratio, materials, unit cement weight, porosity, kinds of finishing materials, accuracy of constructing, environmental factors and so on. And the air permeability is closely related to the carbonation velocity because it represents the properties of concrete. This paper presents an experimental investigation on the carbonation effected by air permeability n mortar and concrete. As a result, it was found that the carbonation velocity of concrete is faster than that of mortar and it is possible to predict the carbonation velocity using air permeability.

  • PDF

Temperature development and cracking characteristics of high strength concrete slab at early age

  • Wu, Chung-Hao;Lin, Yu-Feng;Lin, Shu-Ken;Huang, Chung-Ho
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.747-756
    • /
    • 2020
  • High-strength concrete (HSC) generally is made with high amount of cement which may release large amount of hydration heat at early age. The hydration heat will increase the internal temperature of slab and may cause potential cracking. In this study, slab specimens with a dimension of 600 × 600 × 100 mm were cast with concrete incorporating silica fume for test. The thermistors were embedded in the slabs therein to investigate the interior temperature development. The test variables include water-to-binder ratio (0.25, 0.35, 0.40), the cement replacement ratio of silica fume (RSF; 5 %, 10 %, 15 %) and fly ash (RFA; 10 %, 20 %, 30 %). Test results show that reducing the W/B ratio of HSC will enhance the temperature of first heat peak by hydration. The increase of W/B decrease the appearance time of second heat peak, but increase the corresponding maximum temperature. Increase the RSF or decrease the RFA may decrease the appearance time of second heat peak and increase the maximum central temperature of slab. HSC slab with the range of W/B ratio of 0.25 to 0.40 may occur cracking within 4 hours after casting. Reducing W/B may lead to intensive cracking damage, such as more crack number, and larger crack width and length.

A Study on Chloride Binding Capacity of Various Blended Concretes at Early Age (초기재령에서 각종 혼합콘크리트의 염소이온 고정화능력에 관한 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.133-142
    • /
    • 2008
  • This paper studies the early-aged chloride binding capacity of various blended concretes including OPC(ordinary Portland cement), PFA(pulversied fly ash), GGBFS(ground granulated blast furnace slag) and SF(silica fume) cement paste. Cement pastes with 0.4 of a free water/binder ratio were cast with chloride admixed in mixing water, which ranged from 0.1 to 3.0% by weight of cement and different replacement ratios for the PFA, GGBFS and SF were used. The content of chloride in each paste was measured using water extraction method after 7 days curing. It was found that the chloride binding capacity strongly depends on binder type, replacement ratio and total chloride content. An increase in total chloride results in a decrease in the chloride binding, because of the restriction of the binding capacity of cement matrix. For the pastes containing maximum level of PFA(30%) and GGBFS(60%) replacement in this study, the chloride binding capacity was lower than those of OPC paste, and an increase in SF resulted in decreased chloride binding, which are ascribed to a latent hydration of pozzolanic materials and a fall in the pH of the pore solution, respectively. The chloride binding capacity at 7 days shows that the order of the resistance to chloride-induced corrosion is 30%PFA > 10%SF > 60%GGBFS > OPC, when chlorides are internally intruded in concrete. In addition, it is found that the binding behaviour of all binders are well described by both the Langmuir and Freundlich isotherms.

Analysis of Time-Series data According to Water Reduce Ratio and Temperature and Humidity Changes Affecting the Decrease in Compressive Strength of Concrete Using the SARIMA Model

  • Kim, Joon-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.123-130
    • /
    • 2022
  • In this paper is one of the measures to prevent concrete collapse accidents at construction sites in advance. Analyzed based on accumulated Meteorological Agency data. It is a reliable model that confirms the prediction of the decrease rate occurrence interval, and the verification items such as p_value is 0.5 or less and ecof appears in one direction through the SARIMA model, which is suitable for regular and clear time series data models, ensure reliability. Significant results were obtained. As a result of analyzing the temperature change by time zone and the water reduce ratio by section using the data secured based on such trust, the water reduce ratio is the highest in the 29-31 ℃ section from 12:00 to 13:00 from July to August. found to show. If a factor in the research result interval occurs using the research results, it is expected that the batch plant will produce Ready-mixed concrete that reflects the water reduce ratio at the time of designing the water-cement mixture, and prevent the decrease in concrete compressive strength due to the water reduce ratio.

A Study on the Dispersion Effects and Slump for Elapsed Time of Cement Admixed with Naphthalene Sulfonated Condensate and Maleic Anhydride Copolymer (나프탈렌술폰산축합물과 무수말레인산계 공중합체를 첨가한 시멘트의 분산효과 및 경시변화에 관한 연구)

  • 김도수;김은영;홍성수;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.94-99
    • /
    • 1995
  • Naphthalene sulfonated condensatd(NSF) has been widely using for the superplasticizing of ement and concrete. But NSF has a very large mobility loss with elapsed tiom. To retain mobility of NSF during a certain time, maleic anhydride and acrylic acid copolymer(MA) was polymerized and mixed with NSF in order to perpare admixture holding mobility-retention property of cement. By applying this admixture for ement paste, we examined the fluidity and mobility retention property as a function to elapsed time and measured the compressive strength of mortar with curing time. As a result, NSF containing 20wt% of MA showed very excellent fluidity and mobility-retention property. These properties were affected by the added amount of admixture and the ratio of water to cement.

  • PDF

Setting and Hardening of Portland Cement Mortar Investigated with Wave Reflection Factor (WRF를 이용한 모르터의 응결 및 경화 예측)

  • ;Thomas , Voigt;Surendra P. Shah
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.834-839
    • /
    • 2003
  • Previous research has been conducted on an ultrasonic wave reflection method that utilizes a steel plate embedded in the concrete to measure the reflection loss of shear waves at the steel-concrete interface. The reflection loss has been shown to have a linear relationship to compressive strength at early ages. The presented investigations continue this research by examining the fundamental relationship between the reflection loss, measured with shear waves, and the hydration kinetics of Portland cement mortar, represented by dynamic elastic moduli, compressive strength and degree of hydration. Dynamic elastic moduli are measured by fundamental resonant frequency and degree of hydration is determined by thermogravimetric analysis. The water/cement ratio was varied for the tested mixture compositions. The results presented herein show that compressive strength, dynamic shear modulus and degree of hydration have a linear relationship to the reflection loss for the tested mortars at early ages.

  • PDF

An Experimental Study on the Strength and Behavior of Reinforced Concrete Columns Containing Shells Substituted a Fine Aggregate (패각류를 잔골재 대체재로 사용한 철근콘크리트 기둥의 내력 및 거동에 관한 실험적 연구)

  • Koo, Hae-Shik
    • KIEAE Journal
    • /
    • v.8 no.3
    • /
    • pp.69-76
    • /
    • 2008
  • This is an experimental study on the maximum load value and structural behavior of reinforced concrete columns containing shells as a substitute fine aggregate of concrete, through making reinforced concrete test columns with shells. In this study, the main factors consist of the grain sizes and the percentage of substitution of shells to fine aggregate in two kinds of water cement ratio. The results of the study showed as followed. The maximum load value decreased with increased the rate of substitution about shells and as the grain size of shells became smaller, the load values of them were somewhat changed higher but it is important that we must consider absorption rate of shells sufficiently. If we have a proper water cement ratio in column productions containing the shells, we can meet the requirement of the percentage of substitution until 30%. The deflection and deformation properties of reinforced concrete columns with shells represented typical curves like that of normal reinforced concrete. But as the failture types, they are able to make some change without being out of the fundamental graph forms. After the analyzing structural behaviors and the properties of reinforced concrete test columns containing shells, the most excellent grain size of shells represented 3.0mm and less with taking uniformly, and the percentage of practicable substitution of them to fine aggregate was about 30%.

Properties of High Strength Concrete Using Fly Ash and Crushed Sand (플라이 애시와 부순모래를 사용한 고강도 콘크리트의 특성)

  • 이봉학;김동호;전인구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.107-116
    • /
    • 2002
  • The amount used of aggregates for concrete is increasing rapidly since the mid-1980s in Korea. The natural gravels from river are already displaced with crushed stone, and use of crushed sand as a substitute of natural river sands, also, is getting increased day by day. This paper is presented fur analysis on mechanical properties of high strength concrete using fly ash and crushed sand. The material functions in mixing design of concretes are various water-cement ratios(w/c) such as 0.25, 0.40, 0.55 and different replacement ratio of crushed sand to natural sands such as 0%, 20%, 40%, 60%. As a results, it has been shown that compressive strengths of concretes with W/C lower than 0.40 and 0.25 are higher than 400 kgf/$\textrm{cm}^2$ and 600 kgf/$\textrm{cm}^2$ respectively. It is also concluded that the results of rapid chloride permeability tests of concrete are evaluated to negligible. The conclusions of this study is that it is possible to use fly ash and crushed sand fur high strength concrete.