• Title/Summary/Keyword: water to cement ratio

Search Result 1,103, Processing Time 0.033 seconds

A Study on the Freeze-Thaw Resistance of Water-permeable Concretes (투수성 콘크리트의 동결융해 저항성에 관한 연구)

  • 은재기;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.433-438
    • /
    • 2000
  • The purpose of this study is to examine the resistance of water-permeable concretes to freezing and thawing action. The water-permeable concretes with cement-aggregate ratio of 1:5.5(by weight) and two kinds of admixture content [SP : superplasticizer(0, 1.0%), HPAE : high performance air entraining agent(0.5, 1%)] used OPC(ordinary portland cement) as binder were prepared, and then tested for relative dynamic modulus of elasiticity, mass change, length change and durablity factor. It's been concluded from the test results that the superior relative dynamic modulus of elasiticity and durability factor of water-permeable concretes were obtained at superplaciticizer 1.0% after 300 cycles. The water-permeable concretes used superplasiticizer 1.0% having relative durability factor of 88% after 300 cycles.

  • PDF

Evaluation of Air Void System and Permeability of Latex-Modified Concrete by Image Analysis Method

  • Jeong, Won-Kyong;Yun, Kyong-Ku;Hong, Seung-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • v.19 no.1E
    • /
    • pp.41-48
    • /
    • 2007
  • Addition of latex to concrete is known to increase its durability and permeability. The purpose of this study is to analyze air void systems in latex-modified concretes using a reasonable and objective method of image analysis with such experimental variables as water-cement (w/c) ratios, latex contents (0%, 15%) and cement types (ordinary portland cement (OPC), high-early strength (HES) cement and very-early strength (VES) cement). The results are analyzed by spacing factor, air volume (content) after hardening, air void distribution and structure. Additionally, air void systems and permeability of latex-modified concrete (LMC) are compared by a correlation analysis. The results are as follows. The LMC of the same w/c ratio showed better air entraining (AE) effect than OPC with AE water reducer. The VES-LMC showed that the quantity of entrained air below $100{\mu}m$ increased more than four times. For the case of HES-LMC, microscopic entrained air between the range of 50 to $500{\mu}m$ increased greater than 7 times even in the absence of anti-foamer. Although spacing factor was measured rather low, the permeability of latex-modified concrete was good. It is construed that air void system does not have a considerable effect on the property of latex-modified concrete, but latex film (membrane) has a definite influence on the durability of LMC.

Study on the Mixing Design Method of Concrete Using Finely Ground Granulated Furnace Blast Slag (고로슬래그 미분말 혼입 콘크리트의 배합설계방법에 관한 연구)

  • Shin, Sung-Woo;Lee, Han-Seung;Han, Geum-Wook;Kim, Jung-Sik;Park, Gui-Suk;Kang, Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.625-630
    • /
    • 1999
  • This study was carried out to investigate quantitatively the relatonship between the water binder ratio and the concrete strength using finely ground granulated furnace blast slag to apply f 0.5% type admixture. The experimental parameters are water-binder ratio (40, 45, 50, 55, 60%) and slag contents(0, 10, 20, 30%). As a result, it can make that the water-binder ratio of concrete contented slag can be calculated by equation using relationship between compressive strength of concrete and water-binder ratio which is consisted of mixing strength and cement strength K.

  • PDF

Pull-out Resistance Characteristics of the Anchor Bar According to the Grouting Material (주입재료에 따른 Anchor Bar의 인발저항 특성)

  • Yea, Geu-Guwen;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.227-232
    • /
    • 2008
  • In this study, the pull out resistance characteristics of an anchor bar to support a spillway installed in a slope are investigated by field tests. The injection materials were a cement mortar and cement milk. Unconfined compression strengths of those materials under several conditions were measured. As the result of compression test, the unconfined compression strengths of the cement mortar and the cement milk have positive proportional relation-ship with the water-cement ratio. They also have negative proportional relationship with increasing the curing time. In the same condition of water-cement ratio and curing time, the unconfined compression strength of cement milk is larger than that of cement mortar. In order to reduce the eccentricity in anchor bar during pull-out test in the field, the installation apparatus was improved by inserting a nut type of steel fixing coupling into the anchor bar. As the result of the pull-out test, the strength modification of cement milk was increased steeply at the early curing time. However, that of cement mortar was increased gradually with passing the curing time. Therefore, the cement milk has to use as the injection material for a prompt construction of anchor bar because the strength modification of cement milk is occurred at the early curing time.

Modelling the performance of self-compacting SIFCON of cement slurries using genetic programming technique

  • Cevik, Abdulkadir;Sonebi, Mohammed
    • Computers and Concrete
    • /
    • v.5 no.5
    • /
    • pp.475-490
    • /
    • 2008
  • The paper explores the potential of applicability of Genetic programming approach (GP), adopted in this investigation, to model the combined effects of five independent variables to predict the mini-slump, the plate cohesion meter, the induced bleeding test, the J-fiber penetration value, and the compressive strength at 7 and 28 days of self-compacting slurry infiltrated fiber concrete (SIFCON). The variables investigated were the proportions of limestone powder (LSP) and sand, the dosage rates of superplasticiser (SP) and viscosity modifying agent (VMA), and water-to-binder ratio (W/B). Twenty eight mixtures were made with 10-50% LSP as replacement of cement, 0.02-0.06% VMA by mass of cement, 0.6-1.2% SP and 50-150% sand (% mass of binder) and 0.42-0.48 W/B. The proposed genetic models of the self-compacting SIFCON offer useful modelling approach regarding the mix optimisation in predicting the fluidity, the cohesion, the bleeding, the penetration, and the compressive strength.

An Experimental Study on the Relation of Compressive Strength and the Equivalent Age according to the Kind of Cement (시멘트종류에 따른 압축강도와 등가재령 관계에 관한 실험적 연구)

  • Na, Chul-Sung;Jang, Jong-Ho;Khil, Bae-Su;Kim, Jung-II;Nam, Jae-Hyun;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.13-16
    • /
    • 2003
  • There is no study that application of the maturity using H.B.C and H.S.C. Also activation energy has different values according to the cement, admixture and water-cement ratio. Therefore to make accurate explanation for the effect of temperature on concrete strength development properties, it is necessary that activation energy value according to the kind of cement is reviewed. This study compares and estimates equivalent age using activation energy value obtained by this experiment and Freiesleben activation energy value with compressive strength of concrete. As the result of this study, activation energy value obtained by this study has more accurate explanation of temperature's influence on concrete strength development than Freiesleben activation energy value.

  • PDF

Properties of Recycled Cement by Content of Fine Aggregate from Waste Concrete Powder (폐콘크리트 미분말의 골재함유량에 따른 재생시멘트의 물성)

  • Bae, Jong-Kun;Kwon, Eun-Hee;Ahn, Jae-Cheol;Park, Dong-Cheon;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.101-102
    • /
    • 2012
  • A policy for recycling waste concrete has been extensively studied, but it is still lacking to recycle and reuse as a cementitious powder, and the property has big different depending on the aggregate rates. In this study, the amount of cement powder according to the internal properties of the aggregate were mixed. From as a result, Concrete Powder to play inside the aggregate composition of the cement composition CaO rigs that causes loss of power and strength reduction due to rising real water cement ratio will affect large.

  • PDF

An Experimental Study on the Relation of Compressive Strength and the Equivalent Age according to the Kind of Cement (시멘트종류에 따른 압축강도와 등가재령 관계에 관한 실험적 연구)

  • 나철성;장종호;길배수;김정일;남재현;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.13.1-16
    • /
    • 2003
  • There is no study that application of the maturity using H.S.C and H.S.C. Also activation energy has different values according to the cement, admixture and water-cement ratio. Therefore to make accurate explanation for the effect of temperature on concrete strength development properties, it is necessary that activation energy value according to the kind of cement is reviewed. This study compares and estimates equivalent age using activation energy value obtained by this experiment and Freiesleben activation energy value with compressive strength of concrete. As the result of this study, activation energy value obtained by this study has more accurate explanation of temperature's influence on concrete strength development than Freiesleben activation energy value.

  • PDF

CO2 Emissions Reduction by Utilization of Recycled Cement (재생시멘트 활용에 따른 CO2배출량 저감효과)

  • Kwon, Eun-Hee;Ahn, Jae-Cheol;Hwang, Jong-Wook;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.78-79
    • /
    • 2013
  • A policy for recycling waste concrete has been extensively studied, but it is still lacking to recycle and reuse as a cementitious powder, and the property has big different depending on the aggregate rates. In this study, the amount of cement powder according to the internal properties of the aggregate were mixed. From as a result, Concrete Powder to play inside the aggregate composition of the cement composition CaO rigs that causes loss of power and strength reduction due to rising real water cement ratio will affect large.

  • PDF

Estimation of Unconfined Compressive Strength (UCS) of Microfine Cement Grouted Sand (마이크로 시멘트로 그라우팅 된 모래의 일축압축강도 예측)

  • Nam, Hongyeop;Lee, Woojin;Lee, Changho;Choo, Hyunwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.5-15
    • /
    • 2018
  • The unconfined compressive strength (UCS) test through coring is widely used to determine the reinforcement effect of the ground with grouting. However, the UCS test through coring can disturb the ground, is expensive and takes a lot of time to prepare the specimen. In this study, the factors affecting UCS of microfine cement grouted sand are evaluated and an empirical equation of UCS of microfine grouted sand is suggested. It is observed that UCS increases linearly until 28 days, however, the increasing rate of strength decreases sharply after that 28 days. The W/C ratio is dominant factor influencing UCS and UCS increases exponentially with the decrease of water/cement (W/C) ratio. Also, UCS increases linearly with increasing the relative density ranging from 30% to 70% and with decreasing median particle size. However, in case of W/C ratio=1 and K6 ($D_{50}=0.47mm$), UCS is lower than that of K4 ($D_{50}=1.08mm$) and K5 ($D_{50}=0.80mm$) due to filtration effect. Based on the experimental results, the empirical equation of UCS of microfine cement grouted sand can be expressed as the function of median particle size ($D_{50}$), porosity (n) and W/C ratio.